
UNIVERSITÀ DEGLI STUDI DI PERUGIA

Engineering Department

MASTER’S DEGREE COURSE

IN COMPUTER ENGINEERING AND ROBOTICS

Master Thesis

Securing databases using Attribute Based
Encryption and Shamir’s Secret Sharing

Graduand: Promoter:

Martina Palmucci Prof. Gianluca Reali

Academic Year 2021–2022

i

In theory, there is no difference between theory and practice.
But, in practice, there is.

Benjamin Brewster

Contents

Acknowledgements iv

Abstract v

I Introduction 1

1 Problem statement 2
1.1 Data protection . 2
1.2 LumoSQL . 3
1.3 Research Topic . 4
1.4 State of the art . 5
1.5 Overview . 5

2 Modern cryptography and ECC 6
2.1 Elliptic curves . 6

2.1.1 The group law . 7
2.2 Elliptic curves over finite fields 12

2.2.1 Finite fields . 12
2.2.2 Properties . 13

2.3 Elliptic-curve discrete logarithm problem 15
2.4 Elliptic-curve cryptography . 16

2.4.1 Elliptic-curve Diffie-Hellman 16
2.5 Edwards curves and Curve25519 17

3 Elliptic Curve Integrated Encryption Scheme 19
3.1 Functional components of ECIES 19

3.1.1 Key-agreement protocol 19
3.1.2 Hash function . 20
3.1.3 Key derivation function 20
3.1.4 Message authentication code 20
3.1.5 Symmetric scheme . 21

3.2 ECIES encryption and decryption 21
3.3 Selected functions in ABE-SSS . 23

3.3.1 ECDH-based KA . 23
3.3.2 Chacha20-Poly1305 . 23

ii

CONTENTS iii

4 Shamir’s Secret Sharing 24
4.1 Mathematical formulation . 24

4.1.1 Making shares . 24
4.1.2 Recovering secret . 25

4.2 Observations . 25
4.2.1 Information theoretically secure 25
4.2.2 Share revocation . 26

II Attribute-Based Encryption using Shamir’s Secret Shar-
ing 27

5 ABE-SSS project 28

6 Resource securing 29
6.1 Resource encryption . 29
6.2 Resource decryption . 30

7 Data encryption key securing 31
7.1 Policy tree . 31

7.1.1 Attribute keypairs . 33
7.2 Share tree . 34

7.2.1 One-level tree . 35
7.2.2 Two-level tree . 36
7.2.3 Multi-level tree . 39

7.3 Recovering algorithm . 41
7.3.1 Share tree decryption and recovering 41

8 Results 46
8.1 Proof of concept . 46
8.2 Solution performance . 46
8.3 Solution evaluation . 48

Conclusion 50

Future work 51

Glossary 52

Abbreviations 53

Acknowledgements

This work has been supported by my promoter and professor Prof. Gianluca
Reali. I must thank him for believing in me from the beginning and giving
me the opportunity to have an extraordinary experience of research abroad.
Throughout this physical and metaphorical journey, his professionalism has
represented a main and constant point of reference for me.

I would also like to show gratitude to Prof. An Braeken and Prof. Kris Steen-
haut from the Vrije Universiteit Brussel (VUB). They welcomed and trusted me
even though they didn’t know me. They represented constant points of ref-
erence not only in good times but also in difficult situations. Their support,
advice and feedback have been fundamental to improve my work and knowl-
edge. The work they do in research and with students is exceptional. It would
be impossible not to admire them.

Words cannot express my gratitude to my supervisors Ruben De Smet and
Thibaut Vandervelden for their invaluable patience and feedback, technical
and moral support. They have always been there to support and guide me.
We could laugh in good times and but also in bad ones because they always
know how to produce a positive vibe in the office whatever the circumstance.
They taught me a lot and generously provided knowledge and expertise. They
have been, and will continue to be, guides and models for me as professionals
and as people.

Additionally, this endeavour would not have been possible without the
support of my family. Their belief in me and constant love have kept my spir-
its and motivation high during this process. I thank my mom for teaching me
to be brave and believe in my dreams. Thanks to my dad for teaching me the
priceless importance of simple things. Thanks to my little brother for being so
similar and so different from me, for always helping me directly or indirectly
to see things from a different point of view, often fresher and lighter.

Lastly but not least, I am grateful to my old and recent friends, and my Ital-
ian and foreign colleagues, for their friendship, love, and emotional support.
Thank you for sharing this journey with me.

iv

Abstract

LumoSQL is an ambitious project to bring encrypted storage modes to SQLite
embedded databases, while keeping the familiar SQL GRANT syntax. SQLite
is embedded, meaning anyone with access to the device has access to SQLite
data files and applications communicate with SQLite via local function calls.
These two reasons mean that at-rest encryption of the SQLite data files is the
only possibility.

Whole-file encryption implies that as soon as the database is unlocked it
is fully available to the device, and all any permitted application can do any-
thing it likes with the plain text, such as send it over a network. In contrast,
LumoSQL implements persistent data privacy on the device (at-rest encryp-
tion) and off the device when subsets of data are sent over a network (per-row
encryption). LumoSQL also implements fine-grained data protection, with ac-
cess rights discriminated by attributes the user possesses including SELECT,
UPDATE, INSERT, DELETE, CREATE. The notion of fine-grained permissions
which persist regardless of where a database row is copied is novel, and is the
most ambitious of LumoSQL’s goals.

We implement Attribute-based Encryption Shamir’s Secret Sharing (ABE-
SSS), an encryption system capable of achieving these objectives as part of the
LumoSQL project. The implementation is written in the Rust programming
language, which has suitable features for cryptographic applications. ABE-SSS
implements the interface of an Attribute-Based Encryption (ABE) system. ABE
allows encrypting a resource against attributes instead of concrete users. Only
users that possess a correct combination of attributes will be able to decrypt the
resource. Concretely, the ABE system is built on Shamir’s Secret Sharing (SSS).
The latter enables the distribution of the secret cryptographic keys according
on the attributes defined by ABE.

Finally, the system is evaluated based on its functionality, memory, and the
number of operations necessary to acquire and store the output. The functions
required by an encryption system are met. The ABE standards are met with
the exception of collision resistance, which is still in the works. The memory
required to save the result represents a significant overhead that can be reduced
by optimizing the ABE system management, for which a feasible solution has
already been proposed. The complexity with which the link between system
attributes is implemented determines the number of operations.

v

Part I

Introduction

1

Chapter 1

Problem statement

1.1 Data protection

Nowadays, the amount of data stored on our digital devices is huge and the
tendency is rising. The type of data traveling on digital medium can be varied.
In the case of data protection and attacks, those of greatest interest are data that
can jeopardize the freedom, safety and health of an individual. In fact, among
the digital data, it is easy to find data that allow direct and indirect identifi-
cation, such as personal data and images, or the national code, the IP address
and the license plate number. There are sensitive data, that is, those that re-
veal racial or ethnic origin, religious or philosophical beliefs, political opinions,
trade union membership, relating to health or sexual life. Not to mention the
biometric, financial and judicial data.

In this scenario, private data is becoming a greater concern especially due
to recent data breaches, thefts and cyber attacks. Indeed, they can cause devas-
tating damages. Entities and organizations must protect their data proactively
and update their safeguards on a regular basis. The rise in these crimes, as
well as their significant social and economic impact, has prompted institutions
to speak out on the issue. Recent legislation, notably the GDPR [1] and the
CDR [2] started to mandate technical measures for data protection.

Cyberattacks that compromise the security of sensitive data can come from
both inside and outside a system. Once a hacker has access to valuable infor-
mation on a server, they are likely to steal data from it. Then they use the data
to request a ransom from the company or the organization they targeted, ex-
ploit the data or other financial benefits. People are increasingly aware of data
security and privacy and want their data to be safeguarded and used only as
required. As an example, we report the case of Baltimore. The Baltimore ran-
somware attack [3] in May 2019 is a well-known example of a ransom note
hacking attack. A form of ransomware known as RobbinHood infiltrated the
networks and data of the whole city of Baltimore, Maryland. Another big city
in the United States, Atlanta, had experienced a similar attack the previous year
[3]. In the case of Baltimore, the ransom requested is 13 bitcoins (about $76 280)
in exchange for access credentials. In the case of Atlanta, they demanded for
$51 000 via Bitcoin. Both cities had to pay far larger sums to restore their sys-
tems.

2

CHAPTER 1. PROBLEM STATEMENT 3

This is not the only instance in which data security is extremely impor-
tant. So far, we have discussed incidents of external attacks. Internal attacks,
on the other hand, are not uncommon. One of the most common types of in-
ternal attacks happens in the following circumstances. When an application
on a modern mobile device requires access to a system resource, the operat-
ing system usually guards this resource through an application programming
interface (API). The operating system is able to allow or reject access to the re-
source this way. However, badly designed APIs or bad implementations of in-
terfaces may fail to guard the resource correctly. In some cases, this may result
in a privacy loophole [4]. Cryptographically enforcing such access rights may
then provide an additional layer of protection. Among insider attacks, how can
we not remember the Facebook–Cambridge Analytica data scandal [5]? In the
2010s, Facebook exposed 87 million users to British consulting firm Cambridge
Analytica, predominantly to be used for political advertising. It was also not
even the first case of data leakage from the American multinational. Facebook
today says that it was its own responsibility, it will solve the problem and en-
hance the privacy level of their users. However, episodes of Meta platform
exploitation seem seem to keep happening but they are trying to be blacked
out.

In both of these categories of unsafe conditions, an encrypted database of-
fers better data security. The database data is transformed into “cipher text”
(illegible text) by the cryptographic procedure using an algorithm. Security
attacks are inevitable, but with improved data security and encryption tech-
niques, hackers may not be able to analyze or decrypt data to better under-
stand it. If you have an encrypted database, an attacker needs a technique to
decrypt the data. The complexity of the cipher and the techniques used to pro-
duce the encrypted data will determine how far the security of the data can go.
As a result, cybersecurity professionals have long identified cryptography as a
critical component of cybersecurity preparedness.

Furthermore, to enhance security against internal threats, researchers re-
cently described a new method for using public key cryptography to increase
the security of underlying data. Data decryption occurs only using so-called
attribute-based encryption when a predetermined set of user attributes coin-
cides with those of the ciphertext. This implies that the person (or machine)
checking the data can specify criteria for the person (or machine) receiving
the data to make a decision. For example, data can only be decrypted on a
certain day, at a certain time, or in a certain place. In other cases, the recipient
must have a high-level security clearance to decrypt the message. The most no-
table advantage of attribute-based encryption over traditional cryptographic
algorithms is its flexible and granular access control. Additionally, it is inde-
pendent of key management or sharing algorithms and has built-in defenses
against collision attacks, which are a means of weakening encryption. In addi-
tion, attribute-based encryption simplifies data sharing by limiting access only
to recipients who meet certain criteria.

1.2 LumoSQL

LumoSQL [6] is an ambitious project that focuses on the importance of personal
data security. Its purpose is to bring a new encrypted storage option to SQLite

CHAPTER 1. PROBLEM STATEMENT 4

embedded databases while retaining the standard SQL-GRANT syntax.
In order to fully appreciate the LumoSQL project and its technological im-

plications, let us first take a step back and try to understand first why SQLite
was chosen. The limitations of this system are then discussed, followed by Lu-
moSQL’s solutions.

SQLite [7] is a C-language software library that implements an ACID-type
SQL DBMS that can be integrated within applications. It is embedded precisely
in this sense: it resides within an application software rather than a server. Its
inventor, D. Richard Hipp, released it public domain, allowing it to be used
without restriction. It is the most often used SQL database software. SQLite
offers a number of extensions that allow for encrypted storage. Every extension
implements the following security model: unrelated applications should not be
allowed to access these data. SQLite Encryption Extension (SEE) [8] is one of
the most well-known and important extensions. A SQLite version with SEE can
read and write ordinary database files written using a public domain version of
SQLite, as well as read and write encrypted ones. Each database file can have
a unique encryption key.

However, none of these include a protection against internal database at-
tacks. In other words, if an entity can access the database, it will have un-
limited access to all of its resources. LumoSQL provides a novel technology
that allows for more granular database encryption. The numerous roles that a
user assumes within the system to which LumoSQL applies would provide the
granularity. Only those who meet the requirements can decrypt the resources
saved in the database. Even if you have complete access to the database, you
will not be able to interpret it until you meet the necessary conditions.

Furthermore, it seeks to accomplish so by retaining the existing syntax in
order to minimize developers’ effort in learning a new syntax and maximize
adherence to the project.

1.3 Research Topic

The objective of this research project is defined as the creation of an Attribute-
Based Encryption (ABE) system, whose key generation is based on Shamir’s
Secret Sharing (SSS) algorithm.

ABE is an asymmetric cryptographic primitive in which the ciphertext and
the user’s secret key are both determined by attributes. Only if the set of at-
tributes of the user key matches the attributes of the ciphertext can a ciphertext
be decrypted in such a system. Since LumoSQL tends to retaining standard
syntax, GRANT-style privileges may be implemented in terms of ABE.

SSS is one of the first cryptographic secret sharing techniques [9]. It allows
you to divide a secret number into a certain number of parts and, given a quota
threshold, we can recover the secret number. Shamir’s Secret Sharing is used
to distribute a secret accessible by entities that have one or more attributes.

ABE and SSS work together to guarantee resource confidentiality. An at-
tribute based key protects each resource. The sharing technique can only re-
cover the correct key to decode the resource if you have the necessary at-
tributes.

CHAPTER 1. PROBLEM STATEMENT 5

1.4 State of the art

Database encryption is yet an emerging and evolving topic. It is defined as
a method that utilizes an algorithm to convert data saved in a database into
”cipher text” that is incomprehensible until first decrypted. In particular, we
focus on data at rest, that is commonly described as “inactive” data that is not
being modified or transferred over a network at the time.

We differentiate three types of database encryption approaches.
The first category is concerned with the transparent database encryption

(TDE), which is used to encrypt an entire database. TDE is included in Mi-
crosoft SQL Server 2008, 2008 R2, 2012, 2014, 2016, 2017, and 2019 [10]. IBM
offers TDE as part of Db2 as of version 10.5 fixpack 5 [11]. Oracle requires the
Oracle Advanced Security option for Oracle 10g and 11g to enable TDE [12].
MySQL enables TDE data encryption at rest with MySQL Enterprise TDE [13].

The second category is concerned with the column-level encryption referred
to relational databases. When opposed to encryption systems that encrypt a
whole database, such as TDE, the ability to encrypt individual columns allows
column-level encryption to be substantially more versatile. However, dncrypt-
ing distinct columns with different unique keys in the same database might
reduce database performance as well as the speed with which the database’s
contents can be indexed or searched. Adoption of this sort of data protection is
substantially lower in this scenario than in the prior one. IBM [14] and Oracle
are among those adopted column-level encryption.

The third category is field-level encryption. Nobody has yet implemented
this kind of encryption. The technological advancements in this subject relat-
ing to a field-level concern primarily the query operation. Experimenting with
offering database operations (such as searching or arithmetic operations) on
encrypted fields without the requirement to decode them is underway. Mon-
goDB [15] is one example of this.

This work aims to lay the groundwork for the development of a field-
encryption database. It is thus a completely new and cutting-edge technology,
unlike anything now available on the market.

1.5 Overview

This thesis is divided into two sections. The first section is dedicated for more
theoretical discussions. In instance, we have a discussion of current cryptogra-
phy and so on in Chapter 2. As a result, it is an essential chapter for compre-
hending all of the factors underpinning the security of this system and newer
systems. The encryption technique employed is shown in Chapter 3. It is a hy-
brid system that requires prior knowledge of both symmetric and asymmetric
cryptography. Instead, Chapter 4 introduces SSS, a cryptographic scheme for
securing private information that relies on slitting rather than encryption. With
Chapter 5, we move on to the second section of the thesis, which explains the
solutions used to finish the outcome. The tools utilized are discussed in detail
in Chapter 5. The system’s functionality is detailed in Chapter 6 and Chapter 7.
Finally, findings are shown in Chapter 8.

Chapter 2

Modern cryptography and
ECC

Diffie and Hellman created public key cryptography1 in 1976 [17], but they
were unable to find a viable way to apply their notion. Rivest, Shamir, and
Adleman [18] created the first viable public key cryptosystem the following
year. The Rivest–Shamir–Adleman (RSA) cryptosystem’s security is based on
the difficulty of factoring huge integers. Diffie and Hellman, on the other hand,
described a key exchange technique whose security is based on the discrete
logarithm problem in F∗

q , and ElGamal later devised a public key cryptosystem
based on the same fundamental problem. In 1985, Koblitz [19] and Miller [20]
proposed substituting the finite field Fq with an elliptic curve E in the hope
that the discrete logarithm issue in the elliptic curve group E(Fq) would be
more difficult to solve than the discrete logarithm problem in the multiplicative
group F∗

q . In fact, with the advent of increasingly powerful computer resources,
traditional systems have become risky unless longer cryptographic keys are
used. Their insight resulted in the development of Elliptic-curve Cryptography
(ECC).

2.1 Elliptic curves

In most cases, the graph of an elliptic curve E can be represented by the points
that satisfy the equation:

y2 = x3 +Ax+B (2.1)

where A,B are constants. Eq. (2.1) will be referred to as the Weierstrass equa-
tion for an elliptic curve. We must identify which set A, B, x, and y belong to.
They are typically regarded as elements of a field, namely a set on which ad-
dition, subtraction, multiplication, and division are defined and behave as the
corresponding operations on real numbers R and rational numbers Q do. Let

1James Ellis first revealed public key cryptography in 1969, but his finding was hidden by the
British government and not declassified until after his death in 1997. Williamson and Cocks, two
additional British government employees, are the original creators of the Diffie-Hellman key ex-
change algorithm and the RSA public key cryptosystem, respectively, although their discoveries
were also classified [16].

6

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 7

K be a field, then we say that E is defined over K when A,B ∈ K. Further-
more, the Weierstrass Eq. (2.1) holds for fields with characteristic other than 2
and 3. Otherwise, the more general form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

where a1, ..., a6 are constants, is useful when working with fields of characteris-
tic 2 and characteristic 3. We call Eq. (2.2) the generalized Weierstrass equation.
In [21] it is shown how to derive Eq. (2.1) from equation Eq. (2.2). In most of
this thesis, we will develop the theory using the Weierstrass equation.

Secondly, it is beneficial to add a point at infinity, commonly denoted by
∞, to an elliptical curve for technical reasons. To make this notion more rig-
orous, an infinite point is defined as a point on a curve that meets particular
mathematical requirements (see Theorem 2.1.1). When the field of definition
is real numbers, we can think of the point at infinity as being at the top and
bottom of the y-axis. For example, when a line is vertical (i.e., x = constant),
it is said to pass through exactly ∞. The top and bottom of the y-axis are the
same point. In fact, we have arranged for two vertical lines to intersect in ∞.
They should meet at the top and bottom of the y-axis for symmetry. However,
two lines should only intersect at one point, therefore the “top” and “bottom”
must be the same. That is, we imagine the ends of the y-axis wrapping around
and meeting (perhaps someplace in the back of the page) at the point∞. This
may appear strange. However, if we are dealing with a field other than real
numbers, such as a finite field, there may be no significant ordering of the com-
ponents, making defining a top and bottom of the y-axis impossible.

Thirdly, we do not allow multiple roots of the cubic. That is to say, we as-
sume that

4A3 + 27B2 ̸= 0 (2.3)

This assumption permits us to work with not singular curves. They are useful
for dealing with the discrete logarithm problem, which we shall solve with el-
liptic curves. However, the case when the roots are not distinct is still relevant
for some problems that we will not address, i.e. factorization problem and pri-
mality testing.

Finally, by combining all of the above facts, we can provide a formal defini-
tion of an elliptic curve [21].

Definition 2.1.1 (Elliptic curve). An elliptic curve E defined over a field K,
with characteristics other than 2 and 3, is a set of points represented by

E(L) = {∞} ∪ {(x, y) ∈ K ×K | y2 = x3 +Ax+B}. (2.4)

where A,B ∈ K so that it is not singular (4A3 + 27B2 ̸= 0).

Example 2.1.1. In Fig. 2.1 we can see three examples of elliptic curves whereas
Fig. 2.2 shows two singular cubic curves, where ∆ := 4A3+27B2. Both figures
consider the field of real numbers [16].

2.1.1 The group law

Most of the interesting features and applications of elliptic curves are due to
the fact that the points on an elliptical curve constitute a so-called “abelian

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 8

Figure 2.1: Three elliptic curves.

Figure 2.2: Two singular cubic curves.

group”. The group of elliptic curves over finite fields, in particular, offers many
interesting cryptographic properties and applications. However, before we get
into the applications, let us take a closer look at what an abelian group is and
why elliptic curves can be defined as such. Therefore, we are now approaching
the group law on an elliptic curve E.

Adding Points on an Elliptic Curve

Begin with two points P1 = (x1, y1), P2 = (x2, y2) on an elliptic curve E, which
is defined by the Eq. (2.1). Create a new point P3 as shown below. Draw a line
L through P1 and P2. L intersects E in a third point P

′

3 as we will see below. P3

is obtained by reflecting P
′

3 across the x-axis.

P1 + P2 = P3 (2.5)

is the definition. This is not the same as adding the point coordinates. This
action may be denoted by P1 +E P2, but we use the shorter notation because
we will never add points by adding coordinates.

First, assume that P1 ̸= P2 and that neither point is ∞. Draw the line L

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 9

through P1 and P2. The slope is

m =
y2 − y1
x2 − x1

. (2.6)

L is vertical if x1 = x2. We will get to this later, so let us suppose x1 ̸= x2. The
equation of L becomes

y = m(x− x1) + y1. (2.7)

Substitute Eq. (2.7) into Eq. (2.1) to get

(m (x− x1) + y1)
2
= x3 +Ax+B (2.8)

and locate the intersection with E. This can be rewritten as

0 = x3 −m2x2 + · · · (2.9)

by moving everything to the right. The three roots of this cubic correspond
to the three points of intersection of L with E. In general, solving a cubic is
difficult, but in this case, we already know two of the roots, x1 and x2, because
P1 and P2 are points on both L and E. Therefore, if we have a cubic polynomial
with roots r, s, and t, then

x3 + ax2 + bx+ c = (x− r)(x− s)(x− t)

= x3 − (r + s+ t)x2 + · · · .
(2.10)

As a result, r + s + t = a. If we know two roots, r and s, we can calculate the
third as

t = −a− r − s. (2.11)

In our case, we see from Eq. (2.9) and Eq. (2.10) that a = −m2. Also, we can
assume that r = x1, s = x2 are the known roots and t = x is the unknown one.
Thus, substituting in Eq. (2.11)

x = m2 − x1 − x2 (2.12)

is obtained. The Eq. (2.12) and the Eq. (2.7) define the x-coordinate and the y

coordinate of the point P
′

3. Now, reflect across the x-axis to obtain the point
P3 = (x3, y3):

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1. (2.13)

When x1 = x2 but y1 ̸= y2, the line between P1 and P2 is a vertical line
that crosses E in ∞. Reflecting ∞ across the x-axis results in the same point
∞ (which is why ∞ is at the top and bottom of the y-axis). Therefore, in this
situation, P1 + P2 =∞.

Now, consider the situation when P1 = P2 = (x1, y1). When two points on a
curve are relatively near, the line connecting them approximates a tangent line.
Therefore, when two points coincide, we consider the line L connecting them to
be the tangent line. We may find the slope m of L using implicit differentiation:

2y
dy

dx
= 3x2 +Ax, so m =

dy

dx
=

3x2
1 +A

2y1
(2.14)

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 10

If y1 = 0, the line is vertical, and we again set P1 + P2 = ∞. As an aside,
if y1 = 0, the numerator 3x2

1 + A ̸= 0. Therefore, assume that y1 = 0. The
equation of L is Eq. (2.7), as previously stated. The cubic equation Eq. (2.9) is
obtained again. We only know one root this time, x1, but it is a double root
because L is tangent to E at P1. As a result, continuing as previously, we get

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1. (2.15)

Finally, let us say P2 = ∞. The line through P1 and ∞ is a vertical line
that intersects E at the point P

′

1, which is the x-axis reflection of P1. We return
to P1 by reflecting P

′

1 over the x-axis to produce P3 = P1 + P2. As a result,
for all points P1 on E, P1 +∞ = P1. Of course, this is expanded to include
∞+∞ =∞.

Ultimately, we can conclude that, in the sense that we have explained with
the preceding considerations, given two points P1 and P2, distinct or coincident
in E, there is a third P

′

3 of E aligned with them. We are so very close to the
definition of the group law on E, which we will denote by additive notation. It
may be tempting to define the sum P1 + P2 of two points P1 and P2 of E just
like the third point of E aligned with P1 and P2. This is not exactly the right
idea. Instead, it is necessary to take ∞ as the neutral element, i.e. zero, of the
group, and define the sum P1 + P2 as follows:

• first take the third point P
′

3 of E aligned with P1 and P2;

• P1 +P2 is defined as the third point P3 of E aligned with P
′

3 and with∞.

In other words, if we think of an elliptic curve defined by an equation of the
type Eq. (2.1), P1 + P2 is the symmetrical point with respect to the x axis of
the third point P

′

3 of E aligned with P1 and P2 (see Fig. 2.3). In this way, the
opposite of each point P is its symmetrical with respect to the x axis.

Figure 2.3: Adding points on an elliptic curve.

Let us summarize the preceding discussion:

Definition 2.1.2 (Additive group law for elliptic curves). Let E be an elliptic
curve over a field K defined as in Definition 2.1.1. Consider the binary opera-
tion + in E

E × E −→ E, (P1, P2) −→ P3

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 11

where P1 = (x1, y1) and P2 = (x2, y2) are points on E with P1, P2 ̸= ∞, and
P1 + P2 = P3 = (x3, y3) defined as follow:

1. If x1 ̸= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where m = y2−y1

x2−x1
.

2. If x1 = x2 but y1 ̸= y2, then P1 + P2 =∞.

3. If P1 = P2 and y1 ̸= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1,

where m =
3x2

1+A
2y1

.

4. If P1 = P2 and y1 = 0, then P1 + P2 =∞.

Moreover, define
P +∞ = P

for all points P on E.

It should be noted that if P1 and P2 have coordinates in a field K that in-
cludes A and B, then P1 + P2 has coordinates in K as well. As a result of the
preceding point addition, E(K) is closed. Let us show that this point addition
has some interesting properties.

Theorem 2.1.1. The points on an elliptic curve E form an additive abelian
group (E,+) with ∞ as the identity element. That is, the addition of points
on E has the following properties:

• commutativity
P1 + P2 = P2 + P1 ∀P1, P2 ∈ E

• existence of identity
P +∞ = P ∀P ∈ E

• existence of inverses

∀P ∈ E ∃P ′ ∈ E s.t. P + P ′ =∞

where the point P ′ is usually denoted −P

• associativity

(P1 + P2) + P3 = P1 + (P2 + P3) ∀P1, P2, P3 ∈ E

We shall not demonstrate this theorem. It can, however, be found in [21].
Also, keep in mind that in the Weierstrass equation Eq. (2.1), if P = (x, y),

then −P = (x,−y). This is no longer true for the generalized Weierstrass
equation Eq. (2.2). If P = (x, y) is on the curve defined by Eq. (2.2), then
−P = (x,−a1x− a3 − y).

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 12

Successive doubling

If P is an elliptic curve point and k is a positive integer, then kP represents
P +P + · · ·+P (with k summands). If k is negative, then kP = (−P)+ (−P)+
· · · (−P), with |k| summands. It is inefficient to add P to itself repeatedly to
compute kP for a large integer k. Using repeated doubling is substantially
faster. For example, in order to compute 19P , we must first compute 2P , then

4P = 2P + 2P

8P = 4P + 4P

16P = 8P + 8P

19P = 16P + 2P + P

This method allows us to quickly compute kP for very big k, say several hun-
dred digits. When we work with rational numbers, the only problem is that
the size of the coordinates of the points grows quite quickly. However, we are
more interested in finite field, such as Fq . In elliptic curves over a finite field
these is not even this issue because we can repeatedly reduce mod q, keeping
the numbers involved relatively small. It is worth noting that the associative
law allows us to perform these computations without regard for the sequence
in which the summands are combined.

2.2 Elliptic curves over finite fields

In this chapter, we will examine the fundamental theory of elliptic curves on fi-
nite fields [16], [21]–[23]. Not only are the results interesting in their own right,
but they are also the starting point for major cryptographic applications, some
of which are specifically utilized in this thesis.

2.2.1 Finite fields

Finite fields have an important role in many areas of mathematics and com-
puter science, including cryptography.

Finite fields can be thought of as a limited collection of numbers with lim-
ited representation. This may sound like a play on words, but it is one of the
essential qualities that makes finite fields a good environment for cryptogra-
phy. Coupled with that, we must remember the property of satisfying certain
basic rules when doing specific operations such as multiplication, addition,
subtraction, and division. This is not obvious for any set of numbers, whether
finite or not.

Mathematically, a finite field, also known as a Galois field, is a field with a
finite number of elements. The number of elements in a finite field is referred
to as its order. A finite field of order q exists if and only if q is a prime power
pk (where p is a prime number and k is a positive integer). Adding p copies
of every element in a field of order pk always results in zero; thus, the field’s
characteristic is p.

All fields of order q = pk are isomorphic. Thus, a field cannot have two
different finite subfields of the same order. All finite fields with the same order

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 13

may thus be identified, and they are unambiguously denoted Fq , Fq or GF (q),
where the initials GF stand for “Galois field”.

Fields of prime order are the simplest examples of finite fields: for each
prime number p, the prime field of order p, Fp, can be formed as the integers
modulo p, Z/pZ. The elements of the prime field of order p can be represented
by integers ranging from 0 to p− 1.

2.2.2 Properties

Assume Fq is a finite field and E(Fq), abbreviate E, is an elliptic curve defined
over Fq . That is, the two requirements listed below are met. An elliptic curve
over the finite field consists of:

• a set of integer coordinates (x, y), such that 0 ≤ x, y < q;

• staying on the elliptic curve: y2 = x3 + Ax + B mod q, according to the
Weierstrass Eq. (2.1).

Example 2.2.1. Let us take the elliptic curve with equation y2 = x3+7 over the
finite field F17. It appears to be a set of points in a q× q square matrix made up
of just integer numbers. It looks like in Fig. 2.4.

Figure 2.4: Example of elliptic curve over F17.

Obviously, the curve seen in the previous Ex. 2.2.1 is “educational”. The
number of elements in the finite field F17 is too small to be applied in cryptog-
raphy.

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 14

Number of elements

Initially, we wish to estimate the number of points in E(Fq), also called “order”
of the group, in order to begin making some observations about the nature of
this algebraic structure. The group E(Fq) is finite because there are only a finite
number of pairs (x, y) with x, y ∈ Fq . Because each x value gives at most two y
values, a trivial upper bound is

E(Fq) ≤ 2q + 1. (2.16)

However, because a “randomly chosen” quadratic equation has a 50% prob-
ability of being solved in Fq , we expect the correct order of magnitude to be
q, not 2q. The following result, proposed by E. Artin in his thesis and demon-
strated by Hasse in the 1930s, demonstrates that this heuristic reasoning is true.

Theorem 2.2.1 (Hasse). Assume E(Fq) is an elliptic curve defined over a finite
field. Then

|#E(Fq)− q − 1| ≤ 2
√
q (2.17)

This theorem is proved in [16]. Hasse’s theorem provides a bound for the
number of points in E(Fq), but no viable procedure for finding #E(Fq) when
q is huge.

Other theories were then developed to determine the cardinality of the ad-
ditive group of elliptic curves more accurately. However, this outcome looks
to be adequate. From Hasse Theorem 2.2.1, the hypothesis of an analogy in
terms of number of elements with the multiplicative group F∗

q can already be
advanced. In this regard, the two groups resemble one other. In cryptography,
group cardinality is an important feature. In fact, its components are the core
foundation of a system’s security. A finite cardinality is desired because we aim
to work in a constrained system in terms of both time and space, such as com-
puters and human life. Despite this, the system cannot abandon its complexity
because it is a safety feature. As a result, the cardinality must be finite but suffi-
ciently high to deter the most obvious attacks, particularly brute force attacks.
Brute force attacks make every attempt possible. If the cardinality of the group
is low, this strategy is likely to succeed quickly. This should be avoided at all
costs.

In conclusion, we note that the group of Fq-points on an elliptic curve and
the multiplicative group F∗

q have analogues. According to Hasse’s Theorem 2.2.1,
they have roughly the same number of elements. However, the former con-
struction of an abelian group has a significant benefit that explains its utility in
cryptography: for a single (big) q, there are many alternative elliptic curves and
#E(Fq) to choose from. Elliptic curves provide a rich source of finite abelian
groups. This will be used to our advantage in the following sections.

Generator of the group

In addition to the number #E(Fq) of elements on an elliptic curve defined
over Fq , we may be interested in the actual structure of the abelian group. This
abelian group is not necessarily cyclic, but it is always the product of two cyclic
groups, namely it is finitely generated. That is to say, it is isomorphic either to
the additive group of Zn, the integers modulo n, or to a direct sum of cyclic
groups, as described below.

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 15

Theorem 2.2.2. Let E be an elliptic curve over the finite field Fq . Then

E(Fq) ≃ Zn or Zn1
⊕ Zn2

(2.18)

for some integer n ≥ 1, or for some integers n1, n2 ≥ 1 with n1 dividing n2.

This theorem is proved in [16]. It permits us to apply cyclic group theory
and finitely generated abelian group theory. The most significant implications
is tied to the generation point of a cyclic group.

Definition 2.2.1 (Cyclic subgroup generated by g). In additive notation, the
cyclic subgroup generated by g can be formed for every element g in any group
G by combining all of its integer multiples:

⟨g⟩ = {kg : k ∈ Z}. (2.19)

The order of g is equal to the number of elements in ⟨g⟩; that is, one element’s
order is equal to the order of the cyclic subgroup that it forms.

A cyclic group G is one that is the same as one of its cyclic subgroups:
G = ⟨g⟩ for some element g, also known as generator of G. For a finite cyclic
group G of order n we have G = {e, g, 2g, · · · , (n− 1)g}, where e is the identity
element and ig = jg whenever i ≡ j mod n; in particular ng = 0g = e, and
(−1)g = (n − 1)g. Therefore, an elliptic curve E defined over a finite field is
always a finite abelian group. If it is also cycle, we can cover all of its elements
by picking g, one of its generators, and multiplying g by k for some k ∈ Z.
However, as previously stated, an elliptic curve is not always cyclic. We can
extend the idea of cyclic groups when it is the direct sum of cyclic groups,
namely finitely generated. Because every finitely generated abelian group is a
direct sum of cyclic groups, it can be represented as the direct sum of cyclic
subgroups formed by various generators gi. That is, when the elliptic curve is
isomorphic to Zn1

⊕Zn2
(see Theorem 2.2.2), it can be written as E = ⟨g1⟩⊕⟨g2⟩.

Coupled with the fast doubling operation (see Section 2.1.1), this appears to
be a highly important trait for elliptic curve implementation in cryptography
systems.

2.3 Elliptic-curve discrete logarithm problem

Elliptic curves do not constitute a cryptographic system on their own. Before
we can define a cryptosystem, we must first incorporate another critical com-
ponent, namely a specific mathematical problem that is simple to declare but
difficult to solve. In this context, the concept of simple and difficult is charac-
terized in terms of computing resources and computational time.

Definition 2.3.1 (Elliptic Curve Discrete Logarithm Problem). Given two points
Q and P , it states that it is hard to find k ∈ Z for the equation kQ = P for spe-
cific groups, such as cyclic subgroups defined over finite fields.

The Elliptic Curve Discrete Logarithm Problem (ECDLP) makes Elliptic
Curves suitable for cryptography. In fact, thanks to the previously discussed
features (see Section 2.2.2), calculating the number P from a random value Q is
inexpensive. It can be found in O(log k log3 q) bit operations by the method of

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 16

repeated doubling [22] [21]. The time estimate is not the most accurate. How-
ever, we will be satisfied with the estimates obtained by employing the most
obvious algorithms for arithmetic in finite fields. We should remark that, aside
from the computing advantages provided by the particular structure of the ad-
ditive abelian group of elliptic curves, the first search for a group was required
since the discrete logarithm problem only applies to groups.

On the other hand, finding the discrete logarithm of a random elliptic curve
element with respect to a publicly known base point is infeasible. That is, given
a finite field Fq with a large q and a specific elliptic curve E with secure param-
eters, no efficient algorithm exists.

2.4 Elliptic-curve cryptography

ECC is a public-key encryption technique that is based on the algebraic struc-
ture of elliptic curves over finite fields. When compared to non-EC encryption
(based on ordinary Galois fields), ECC allows for shorter keys to guarantee
equal security. Thus, ECC has been introduced because it provides security
comparable to classical systems while using fewer bits.

A key size of 4096 bits for RSA, for example, provides the same level of
security as 313 bits in an elliptic curve system. This means that elliptic curve
cryptosystem implementations require smaller chip sizes, lower power con-
sumption, and so on. Though RSA was somewhat faster in some procedures,
such as signature verification, the elliptic curve approaches clearly offer signif-
icant speed increases in many scenarios [21].

Elliptic curves can be used for key agreement, digital signatures, pseudo-
random number generators, and other purposes.

2.4.1 Elliptic-curve Diffie-Hellman

Elliptic-curve Diffie–Hellman (ECDH) is a key agreement protocol that allows
two parties to create a shared secret across an unsecured channel. Both parties
use an elliptic-curve public-private key pair. Then, the shared secret can be
used directly as a key or to generate another key. Following that, the key, or
the derived key, can be used to encrypt subsequent communications with a
symmetric-key cipher.

Key establishment protocol

Assume Alice and Bob wish to establish a shared key, but the only channel
accessible to them may be eavesdropped on by a third party. The domain pa-
rameters must first be decided upon (that is, (p, a, b,G, n, h) in the prime case
or (m, f(x), a, b,G, n, h) in the binary case). The meaning of each element in
both sets is the following:

• p is the prime number that characterizes the finite field Fp.

• m is the integer number specifying the finite field F2m .

• f(x) is the irreducible polynomial of degree m defining F2m .

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 17

• a and b are the elements of the finite field Fq taking part in the equation
of elliptic curve.

• G is the point of the curve that will be used as a generator of the points
representing public keys.

• n is the prime number whose value represents the order of the point G.

• h is the cofactor of the curve, computed as h = #E(Fq)/n, where #E(Fq)
is the number of points on the curve.

Each side must also have a key pair that is suitable for elliptic curve cryptog-
raphy. In other words, each party much has a private key d and a public key
Q. The private key d is a integer in the interval [1, n − 1] that can be randomly
selected. The public key Q is the elliptic curve point based on the parameters
found by computing Q = d ·G, that is, the result of adding G to itself d times.

Let (dA, QA) be Alice’s key pair and (dB, QB) be Bob’s key pair. Prior to
executing the protocol, each party must know the public key of the other party.
Alice computes point (xk, yk) = dA · QB. Bob computes point (xk, yk) = dB ·
QA. The shared secret is xk (the x coordinate of the point). Most standardized
protocols based on ECDH derive a symmetric key from xk using some hash-
based key derivation function. The shared secret calculated by both parties is
equal, because

dA ·QB = dA · dB ·G = dB · dA ·G = dB ·QA (2.20)

Alice first reveals only her public key as information about her key. So, unless
that party can solve the ECDLP, no one else can determine Alice’s private key
(Alice, of course, knows it because she chose it). Bob’s private key is also secure.
Except for Alice and Bob, no one else can compute the shared secret unless they
can solve the ECDH issue.

While the shared secret can be used directly as a key, it is sometimes advan-
tageous to hash the secret in order to remove weak bits caused by the Diffie-
Hellman exchange.

Static or ephemeral public key

A public key might be either static or ephemeral. A static public key is trusted
according to some specified criteria. It can be exchanged via transmission chan-
nel along with its validity proof or it can be recovered by third trusted entities.
On the other hand, if the public key is ephemeral, it can simply be generated
and transmitted over transmission channel. It is only temporary and can’t be
confirmed. As a consequence, if authentication is necessary, authenticity assur-
ances must be achieved through alternative ways.

2.5 Edwards curves and Curve25519

The equation of an Edwards curve over a finite field K is:

x2 + y2 = 1 + dx2y2 (2.21)

CHAPTER 2. MODERN CRYPTOGRAPHY AND ECC 18

They are a family of elliptic curves that were studied by Harold Edwards
in 2007. In 2006, Bernstein considerably advanced the state-of-the-art in ellip-
tic curve cryptography [24]. The elliptic curve presented in that paper, called
Curve25519, doubled the performance of elliptic curve operations, while im-
proving several security properties. Especially through the use of the Edwards
form of this curve, called Ed25519, these performance properties come to their
right [25]. Later, implementations of this specific elliptic curve improved the
performance even further [26], and this curve is on track for being standard-
ized by the IETF [27]. It has quickly gained popularity for new designs, and is
currently at the basis of WhatsApp’s and Signal’s end-to-end encryption [28].

Many cryptographic protocols that are based on the ECDLP require a prime-
order group, whereas elliptic curve groups are often compound. For example,
Curve25519 has a cofactor of n = 8. Using the Decaf technique [29], it is possi-
ble to obtain a prime-order group from an elliptic curve group. Applying the
Decaf technique to Curve25519 hence yields Ristretto255 [30].

Chapter 3

Elliptic Curve Integrated
Encryption Scheme

The Elliptic-curve Integrated Encryption Scheme (ECIES) is a specific hybrid
encryption scheme invented by Abdalla, Bellare, and Rogaway [31]. ECIES is
the best known elliptic curve encryption technique, and as such, it has been
incorporated in various standards like SECG SEC-1, ISO/IEC 18033-2, IEEE
1363a and ANSI X9.63.

The term “hybrid” refers to the use of both symmetrical and asymmetrical
cryptosystems inside it. The core edge of hybrid systems is based on the combi-
nation of the effectiveness of a symmetric-key cryptosystem with the ease of a
public-key cryptosystem. Moreover, ECIES adds up ECC benefits, namely the
same security level as standard public key systems, such as RSA, employing
lower key length.

3.1 Functional components of ECIES

Like in any hybrid cryptosystem, it is feasible to see in ECIES scheme two im-
portant aspects: the asymmetric Key Encapsulation Mechanism (KEM), used
to secure symmetric key material for transmission, and the data encapsula-
tion scheme, which is a symmetric-key cryptosystem. In ECIES, the asymmet-
ric KEM is a Key Agreement (KA) function. The data encapsulation scheme,
intead, is made up of the Key Derivation Function (KDF), the Message Au-
thentication Code (MAC) and the symmetric cipher.

Now, we examine each function in depth but we can also start taking a look
at Fig. 3.1 and Fig. 3.2 while we are reading. The two figures show the ECIES
encryption scheme and the ECIES decryption scheme. First and second steps
belong to the KEM whereas the rest represents the data encapsulation scheme.

3.1.1 Key-agreement protocol

The ECIES standard do not assume any share secret between the sender and
recipient before the communication starts. In order to communicate through a
potentially insecure channel, they need to establish a share secret key kS first.

19

CHAPTER 3. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEME 20

QR
Recipient’s
public key

KA2° STEP

dS

Sender’s
ephemeral
private key

Ephemeral key
pair generation1° STEP

QS

Sender’s ephemeral
public key

Param #2

Optional parameters

MAC

5° STEP

kM , kE
MAC key,
ENC key

KDF 3° STEPdSQR

Shared secret
value

Param #1

Optional parameters

tag

Tag

ENC 4° STEP

m

Plaintext

c

Encrypted
message

CRYPTOGRAM

6° STEP

kM

kE

Figure 3.1: ECIES encryption scheme

A KA protocol is a protocol that allows two or more parties to agree on a key
in such a way that both parties have an effect on the outcome. Protocols that
are useful in practice do not divulge the key to any eavesdropping party.

3.1.2 Hash function

Hash functions take a variable length binary string as input and return a fixed
length binary string corresponding to the starting data. Other primitives under
the scope of ECIES use hash functions (e.g. KDF or MAC).

3.1.3 Key derivation function

When the sender and recipient share a secret kS , the KDF can be used. A KDF
is a cryptographic algorithm that uses a secret value and some optional pa-
rameters, kS and O1 in this case, to generate one or more secret keys. Coupled
with the shared secret key, ECIES requires one key kE for symmetric encryp-
tion/decryption and one key kM for integrity checking.

3.1.4 Message authentication code

The ECIES cryptosystem provides a MAC, also known as tag, a short piece of
information that protects the message’s data integrity as well as its authenticity.
The tag is computed taking the MAC key kM , the encrypted message c and
some optional parameters O2 as input.

CHAPTER 3. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEME 21

dR
Recipient’s
private key

KA2° STEP

QS

Sender’s
public key

Param #2

Optional parameters

MAC

4° STEP

¿=?

kM , kE
MAC key,
ENC key

KDF 3° STEPdRQS

Shared secret
value

Param #1

Optional parameters

tag

Tag

DEC 5° STEP

m

Decrypted
message

c

Encrypted
message

CRYPTOGRAM

1° STEP

kM

kE

Figure 3.2: ECIES decryption scheme

3.1.5 Symmetric scheme

Finally, a symmetric cipher is used to encrypt and decrypt a message. In this
chapter, we call them ENC for encryption and DEC for decryption. The en-
cryption key is kE , which was obtained from the KDF. Since it is symmetric,
the same key is adopted for both encryption and decryption process.

3.2 ECIES encryption and decryption

Let us now integrate what has just been mentioned and attempt to outline the
process of encryption and decryption of a communication using ECIES.

The whole encryption procedure shown in Fig. 3.1 is summarized by Al-
gorithm 1. In order to describe the steps that must be taken to encrypt a clear
message, we will assume that a sender wants to send a message to a recipient.
The steps that the sender must complete in order to encrypt a plaintext are the
following:

1. generate the sender’s key pair (dS , QS) at random;

2. compute the share key applying the KA function with the sender’s pri-
vate key dS and the recipient’s public key QS as input;

CHAPTER 3. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEME 22

3. use the KDF with the share key and some optional parameters as input
in order to get the encryption key kE and the MAC key kM ;

4. encrypt the target message m using a symmetric encryption method and
the encryption key kE ;

5. use the selected MAC function, together with the encrypted message, the
MAC key, and some optional parameters in order to produce a tag;

6. send a cipher text that combines the encrypted message c, its ephemeral
public key QS as well as the tag.

Algorithm 1: ECIES Encryption
Data: Message m, Recipient’s public key QR, Optional shared

parameters O1, O2

Result: Ciphertext QS ||c||d
1

2 (dS , QS)← generate keypair(); /* dS is ephemeral sender’s
private key, QS is ephemeral sender’s public key */

3

4 kS ← KA(dS , QR) = {return dSQR}; /* kS is shared key */
5 (kE , kM)← KDF(kS ||O1); /* kE is encryption key, kM is

MAC key */
6

7 c← ENC(kE , m); /* c is encrypted message */
8 d←MAC(kM , c||O2); /* d is tag of encrypted message */

In order to access the original message and verify its integrity, the recipient
has to perform the following actions:

1. retrieve the ephemeral public key QS , the tag, and the encrypted message
c from the cryptogram so that they can be managed individually;

2. compute the shared secret kS using the KA function with the private key
dR and the ephemeral public key QS as input. As previously stated, this
is the identical one used by the sender;

3. using KDF, obtain kE and kM originating from the shared key kS ;

4. compute the element tag’ using the MAC key kM , the encrypted message
c, and the same optional parameters used by sender. After that, the re-
cipient must compare the tag’ value with the tag received as part of the
cryptogram. If the values are different, the receiver must reject the cryp-
togram due to a failure in the MAC verification procedure. Otherwise, it
indicates that certain problems or assaults occurred during the operation;

5. decrypt the encrypted message c using the same symmetric cipher as the
sender used and the encryption key kE .

Algorithm 2 summarizes the decryption process from keys derivation to mes-
sage decryption.

CHAPTER 3. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEME 23

Algorithm 2: ECIES Decryption
Data: Ciphertext QS ||c||d, Recipient’s private key dR, Optional shared

parameters O1, O2

Result: Message m
1

2 kS ← KA(dR, QS) = {return dRQS} ; /* kS is shared key */
3 (kE , kM)← KDF(kS ||O1) ; /* kE is encryption key, kM is

MAC key */
4

5 if d ̸= MAC(kM , c||O2) then
6 failed;
7 else
8 m = DEC(kM , c)
9 end

3.3 Selected functions in ABE-SSS

Given the number of functions and options available, the most difficult aspect
of utilizing ECIES is determining the best combination of functions and param-
eters to employ.

3.3.1 ECDH-based KA

According to ECIES standards, we chose to use a KA function based on ECDH
principle of operation (see Section 2.4.1).

The process adopted is as following. Initially, the sender and recipient agree
to use a certain cryptographic elliptic curve E over a finite field Fq , along with
its generator point G and order n. Also, each side must have a suitable key pair
for ECC. Assume the sender’s key pair is (dS , QS) and the recipient’s key pair is
(dR, QR). According to ECIES standard, the sender’s public key is ephemeral.
Once each party has derived its own key pair, the recipient sends its public
key to the sender. The sender computes the shared secret as k

′

S = dSQR. At a
later time, the sender sends its ephemeral public key to the recipient so that the
latter can derive the same secret as well. The recipient computes k

′′

S = dRQS .
The sender and receiver now share the same secret, i.e. kS ≡ k

′

S = k
′′

S , as
already demonstrated in Eq. (2.20).

3.3.2 Chacha20-Poly1305

For the symmetric encryption scheme, we chose to use the Chacha20 [32] stream
cipher with a Poly1305 MAC [33]. Chacha20-Poly1305 is widely available, well
studied, has good security margin, is fast in software and very modern. This
combination is being standardized by the IETF [34].

Chapter 4

Shamir’s Secret Sharing

Shamir’s Secret Sharing (SSS) scheme is a technique invented by famous Israeli
cryptographer Adi Shamir in 1979 [9].

It is an important cryptographic technique that allows private information,
namely secret, to be distributed safely across an untrusted network. Secret shar-
ing works by splitting confidential information into smaller parts, or shares,
and then distributing those pieces to a group or network. Individual shares
are meaningless on their own, but when a specific fraction of those shares are
combined, they recreate an original secret. This implies that, rather than requir-
ing all shares to recover the original secret, Shamir’s approach required only a
minimum number of shares. This minimum is known as the threshold.

4.1 Mathematical formulation

Given a secret S, Shamir’s Secret Sharing aims to split the secret into n pieces
S1, · · · , Sn called shares, in such a way that:

• the secret S is easily computed if you know any t or more parts;

• the secret S can’t be reconstructed with fewer than t pieces.

Shamir’s Secret Sharing is based on the Lagrange interpolation theorem,
which states that t points are sufficient to uniquely calculate a polynomial of
degree less than or equal to t− 1.

Moreover, a finite field Fq of order q is used with the intention of providing
a higher security level. It must be q > S, q > n where q is publicly known.

4.1.1 Making shares

We generate the polynomial f(x) =
∑t−1

i=0 aix
i mod q by choosing a0 = S ∈ Fq

and picking t − 1 random components a1, · · · , at−1 ∈ Fq . Let us create any n
points (x0, y0), · · · , (xn−1, yn−1) out of it. Every participant is given at least one
point, whose ordinate needs to be a non-zero in order not to reveal the secret.

Since everyone who receives a share also has to know the value of q, it may
be considered to be publicly known. Therefore, one should select a value for q
that is not too low.

24

CHAPTER 4. SHAMIR’S SECRET SHARING 25

Algorithm 3 shows the pseudocode for this first part of the SSS algorithm,
known as “making shares”.

Algorithm 3: Making shares
Data: Number of shares n, Threshold t, Secret S
Result: Random shares {Si}i=1,...,n

1

2 a0 ← S;
3 for i← 1 to t do
4 ai ← random();
5 end
6 p(x)← atx

t + ...+ a1x+ a0 mod q;
7

8 for j ← 1 to n do
9 xj ← random();

10 Si ← (xj , p(xj));
11 end

4.1.2 Recovering secret

Interpolation can be used to obtain a0 from any subset of t of these pairs. La-
grange interpolation is formulated as follows. Given a set of t points (x0, y0),
· · · , (xt−1, yt−1), where no two xj are the same, the interpolation polynomial in
the Lagrange form is a linear combination

L(x) :=

t−1∑
j=0

yj lj(x) mod q

of Lagrange basis polynomials

lj(x) :=
∏

0 ≤ m ≤ t
m ̸= j

x− xm

xj − xm

where 0 ≤ j ≤ t.
Hence, the secret S = a0 can be obtained through interpolation, with one

possible formula for doing so being a0 = L(0). It is worth noting that L(0) is
equal to the first coefficient of the polynomial L(x).

Algorithm 4 shows the pseudocode for the second part of the SSS algorithm,
known as “recovering secret”.

4.2 Observations

4.2.1 Information theoretically secure

In order to reconstruct the secret, the threshold must be met. The secret can-
not be reconstructed if there is anything less than the threshold. That makes

CHAPTER 4. SHAMIR’S SECRET SHARING 26

Algorithm 4: Recovering secret
Data: Threshold t, Shares {Si}i=1,...,m

Result: Secret S
1

2 {(xi, yi)}i ← {Si}i;
3

4 if m ≤ t then
5 secret can’t be recovered ;
6 else
7 S ← 0;
8 for j ← 1 to t do
9 lj ← 1;

10 for k ← 1 to t and k ̸= j do
11 lj ← xk

xk−xj
;

12 end
13 S ← S + yj ∗ lj ;
14 end
15 S ← S mod q

16 end

Shamir’s Secret Sharing secure against an adversary with unbounded process-
ing power, i.e. a hostile attacker. In cryptography, this is referred to as informa-
tion theoretically secure. The term “information theoretically secure” merely
refers to the fact that not even an attacker with unlimited computer capacity
would be able to decrypt the encrypted secret.

4.2.2 Share revocation

One of the advantages of Shamir’s approach is its flexibility and extensibility.
It means that the secret owner could add, edit, or remove shares at any time
without affecting the original secret.

Part II

Attribute-Based Encryption
using Shamir’s Secret Sharing

27

Chapter 5

ABE-SSS project

In the previous chapters, the fundamental principles were explained. Now,
those techniques can be combined to create an Attribute Based Encryption
scheme using Shamir’s Secret Sharing, which will be explained in the follow-
ing chapters.

The implementation of the system is written in the Rust programming lan-
guage [35]. The first official release of the programming language was in 2015.
Rust is a compiled language that has promising features, such as performance
that is comparable to the C programming language. In addition, it uses new
programming paradigms which guarantee safe memory handling. This is very
appealing for software used for cryptography. Around 70 % of security vulner-
abilities come from memory related bugs.

For the elliptic curve operations, the curve25519-dalek-ng library is uti-
lized [36]. This library provides group operations on the Montgomery and Ed-
wards forms of Curve25519, as well as on the prime-order Ristretto group. The
chacha20poly1305 library, which is a pure Rust implementation of the algo-
rithm ChaCha20Poly1305 [32], is also used.

28

Chapter 6

Resource securing

A database resource is any valuable object stored in a database and represented
as a binary string of 0 and 1.

Due to recent cyber data and theft attacks, data assets are becoming a greater
concern. Such data can in fact represent valuable information, which is often
private, and should be kept safe from the clutches of malicious people who
would use it for illegal purposes.

An encrypted database provides not only an improved data security but
also a solution to that issue. The cryptographic procedure employs an algo-
rithm to convert database resource into “cipher text” (illegible text). Security
breaches are unavoidable. Nevertheless, thanks to improved data security and
encryption techniques, hackers may be unable to analyze or decrypt the data
to gain a better understanding of it. If your database is encrypted, an attacker
will need a method to decrypt the data. The complexity of the cipher and the
techniques used to generate the encrypted data determine how thoroughly the
data can be secured.

As a result, cybersecurity professionals have long recognized cryptography
as an important component of cybersecurity readiness. Researchers, moreover,
have recently described a new cryptographic method to improve the security
of underlying data. When a predetermined set of user attributes coincides with
those of the ciphertext, data decryption occurs.

6.1 Resource encryption

The resource R must be encrypted using an encryption function E and a Data
Encryption Key (DEK). The pseudocode is shown in Algorithm 5.

Algorithm 5: Resource encryption
Data: Resource R, Data encryption key dek
Result: Encrypted resource c

1 c← E(dek,R)

The encrypted value c = E (dek,R) is stored (see Fig. 6.1). By contrast, the
DEK will be treated differently. That will be covered in greater detail in the

29

CHAPTER 6. RESOURCE SECURING 30

following chapters.

Store

E (dek,R)

Figure 6.1: Stored encrypted resource
using the data encryption key dek.

The resource encryption method E will not be discussed in detail. It is not
our intention. It could be any symmetric cipher. The DEK will rather be the
focal point.

6.2 Resource decryption

After recovering the DEK, the resource R can be decrypted using the decryp-
tion function D. That is to say, if we call c the ciphertext of the resource R
encrypted with the DEK, then c = E(dek,R). As a result, the resource R can be
recovered by using R = D(dek, c).

The pseudocode is shown in Algorithm 6.

Algorithm 6: Resource decryption
Data: Encrypted resource c, Data encryption key dek
Result: Decrypted resource R

1 R← D(dek, c)

The methods for recovering the DEK will be discussed in the next section.

Chapter 7

Data encryption key securing

In the previous chapter, we discussed the importance of using an encrypted
database to defend against new and increasingly frequent hacker attacks. Fur-
thermore, we presented the option of making our resources even more secure
by employing an attribute-based encryption method. In other words, despite
having access to a database, we will only be able to decrypt the resources asso-
ciated with our role within the database. This mechanism provides increased
security against both internal and external attacks on the system.

We also learned how to encrypt and decrypt a database resource. Despite
the fact that this appears to be a simple task, the main challenge is including
information about the resource access control policy into the DEK.

In this chapter, we will first look at how to manage an access control policy
associated with a resource. We will see how it can be represented by a Boolean
expression, which can then be managed as a tree structure (Section 7.1). Fol-
lowing that, we will take a glance at the procedure for integrating the policy
tree with the DEK. We will see that the DEK can be chosen at random and
independently because its connection to the access control policy is not estab-
lished until much later. This bond will be formed by constructing a second tree
known as the share tree (Section 7.2). Finally, the issue of how to secure and
limit access to these shares to specific classes of users emerges, which was the
primary goal. In fact, whoever has access to these shares has access to the DEK,
and thus to the resource itself, resolving the original problem (Section 7.3).

7.1 Policy tree

Given that not everyone has access to all of the information in the database,
a method for managing resource access is required. For this reason, every re-
source has an access control policy associated with it. A resource policy estab-
lishes who is authorized to access the resource. It may determine no control,
allowing anybody to access the resource, or it may establish certain limits.

Since the purpose of this work is to safeguard the secrecy of data depending
on the role a user assumes for a given database, an access control policy based
on attributes must be implemented.

A resource access control policy can be modelled as a Boolean expression,
with the variables represented by system attributes. If the entity requesting

31

CHAPTER 7. DATA ENCRYPTION KEY SECURING 32

resource access has a certain attribute, the variable corresponding to that at-
tribute is true; otherwise, it is false. The resource access is permitted when the
result of the expression is true. Access is denied otherwise.

Example 7.1.1. For instance, assume this access control and confidentiality
protection management technique is applied to a university system. Assume
also there are four possible roles in this system: administrator, professor, assis-
tant and student. Define these properties as Boolean values:

q = being an administrator
p = being a professor
r = being an assistant
s = being a student

Hypatia is a PhD student and teaches a few courses at our example university.
Therefore, she has two roles: professor and student. In the case of Hypatia, the
Boolean variables are q = False, p = True, r = False, s = True. Hypatia
requests to access a resource c with the following access control policy:

p ∧ q ∨ p ∧ (r ∨ s) ∨ q ∧ (r ∨ s) (7.1)

In case of Hypatia, the result of the Boolean expression is True. That means she
can access the resource c.

A Boolean expression, in turn, can be represented as a tree structure, with
internal nodes (or branch nodes) containing the Boolean operators and external
nodes (or leaf nodes) containing the expression’s variables. As a result, each ac-
cess control policy linked with a resource is represented using a tree structure.

Example 7.1.2. The tree structure representation of the Boolean statement Eq. (7.1)
is depicted in Fig. 7.1.

∨

∧∧∧

qp p ∨∨q

r s r s

Figure 7.1: The tree structure representation of the Boolean
expression Eq. (7.1) using Boolean operations in inner nodes.

Moreover, the tree representation may become more compact if the Boolean
representation is dropped in favour of allowing internal nodes to take on inte-
ger values, known as threshold. Given an inner node ni and a threshold value
t, the expression associated with the subtree of ni is satisfied if at least t of her
children’s expressions are satisfied.

CHAPTER 7. DATA ENCRYPTION KEY SECURING 33

Example 7.1.3. To give an illustration of what that means, the Fig. 7.2 depicts a
tree T . It is the compact representation of the Boolean expression Eq. (7.1). In
other words, Fig. 7.1 and Fig. 7.2 are interchangeable. Firstly, examine the sub-
tree T ′. It is rooted in the internal node n1,2 and has two child nodes, n2,1 and
n2,2. The expression corresponding to T ′ is true if and only if the user request-
ing access has at least one (1) of the r and s attributes. Threshold 1 is the same
as the Boolean operator or (∨). Secondly, take into account the complete tree
T rooted in n0,0. Its expression is satisfied if and only if the user requesting
access meets at least two of the following requirements: p is true, q is true, T ′

corresponding expression is true.

2 n0,0T

pn1,1 1 n1,2T ′ q n1,3

rn2,1 s n2,2

Figure 7.2: The simplified tree structure representation
of the Boolean expression Eq. (7.1) using thresholds,

instead of Boolean operators, in the inner nodes.

Let us name this representation of an access control policy the policy tree
of a resource. Every policy tree node has a value, which varies depending on
the type of node. Branch nodes have thresholds, whereas leaf nodes have at-
tributes.

7.1.1 Attribute keypairs

In order to protect a resource from unauthorised access, we assume that each
attribute ai is associated with an elliptic curve private-public key pair (dai, Qai)
(see Section 2.4.1). By definition, public keys can be revealed to the entire sys-
tem. Instead, private keys are only issued to those who have verified the at-
tribute linked with the particular private key. Encryption is performed us-
ing public keys attributepublickey. As a result, anyone who wants to securely
save content for a specific group of users who verify the attribute ai will need
the public key associated with ai. The private key dai, on the other hand, is
valuable to descriptors. The revelation of the private key is not influenced by
knowledge of the public key.

Example 7.1.4. Consider again the case of Hypatia in Example 7.1.1. The key-
pairs in the university system under examination are (dp, Qp), (dq, Qq), (dr, Qr),
(ds, Qs). The public keys Qp, Qq , Qr, Qs are accessible to all system users, and
Hypatia has the secret keys dp and ds because she is classified as both a student
and a teacher. Assume a second system user wants to preserve a data item for
all the system’s teachers and encrypts it with the public key Qp. At this point,
Hypatia and the other teachers can access the data by decrypting it with their
private key dp.

CHAPTER 7. DATA ENCRYPTION KEY SECURING 34

7.2 Share tree

At this stage, we must determine how to connect the DEK to the resource ac-
cess policy. Furthermore, it is important to specify how to defend the entire
system without any information being spread. Indeed, only those who match
the required criteria can access the data. Everyone else must not even be able
to acquire partial knowledge. This leads to identify two major issues. The first
is to generate a key that can be recovered by as many different components as
there are requirements. The second issue is securing those components with an
attribute-based cryptographic primitive.

One way to investigate these issues was to examine the tree concept once
more. Consider visiting the policy tree from the leaves to the root, only cross-
ing nodes with possessed attributes. Instead, branch nodes with threshold t
can only be crossed if at least t of their child nodes have been reached. Thus,
whoever reaches the top, i.e. the tree root, has access to the resource. Then we
could perform the following. We can create a second tree, first known as the
secret tree. It has the same structure as the policy tree, and its root represents a
major secret, which is the DEK used to encrypt the resource. Likewise, we can
assure that only those who reach the top of the policy tree can reach the root
of the secret tree. Now we must consider what the other nodes of the secret
tree should include. The SSS algorithm allows you to split a secret into multi-
ple shares and reconstruct the primary secret by collecting a certain minimum
number of shares. This algorithm is exactly suited to our scenario. It begins
with the construction of the root, whose value is the DEK, and we divide it into
many Shamir’s shares. To be more specific, we produce a share for each node in
the secret tree. The decomposition occurs in such a way that reconstructing the
major secret corresponds to ascending to the upper level of the tree. So, while
the secret tree can be visited from the leaves to the root, the shares are created
in the exact opposite direction: from the roots to the leaves.

According to SSS algorithm, what we previously referred to as secrets are
actually Shamir’s shares. Consequently, the secret tree became known as the
share tree. The concept of secrecy, on the other hand, must be preserved be-
cause only those who are permitted can recombine the numerous shares and
recover the primary secret. If the shares were saved in plain text, anyone might
read them and recover the DEK. Remember that the DEK was utilized to safe-
guard the initial resource, which was the fundamental goal of the entire project.
For this reason, the SSS algorithm is used in conjunction with the share encryp-
tion. In order to encrypt shares, attribute public keys are used, while primate
keys are needed to decrypt them.

In the following sections, we will go through each step of this technique,
from the formation of the share tree to its encryption and decryption. Finally,
we will summarize the entire procedure. Initially, we will begin with a simple
one-level tree to examine how the algorithm operates in simple scenarios (see
Section 7.2.1). Then, we will try to get to the heart of the matter gradually by
analysing a two-level tree (see Section 7.2.2). Finally, we will look at the broader
situation of the recursive step with the multi-level tree Section 7.2.3.

CHAPTER 7. DATA ENCRYPTION KEY SECURING 35

7.2.1 One-level tree

Consider a resource R with a policy tree T that has only one level of child
nodes. Let us refer to it as a one-level tree. The root n0 has threshold t and the
child nodes {ni}i have attributes {ai}i respectively.

Example 7.2.1. Fig. 7.3 shows an example of this case when there are three
children. The resource under consideration can be accessed only by those who
meet at least t of a1, a2 or a3 attributes, where t ≤ 3.

t

a1 a2 a3

Figure 7.3: Example of a one-level policy tree.

Share tree generation

The first problem to be overcome is to generate the DEK that can be recovered
by as many different components as there are requirements. A possible solution
to that problem is as follows. According to our solution design, the DEK does
not need to be a particular one. It can be generated randomly. Then, the SSS
algorithm is applied to the DEK, so the latter becomes the secret to be split.
We compute as many Shamir’s shares {Si}i as there are first generation child
nodes (policy tree nodes at the first level). The outcome is another tree with the
same structure as the policy tree. It is known as the share tree.

Algorithm 7 shows the share tree generation algorithm for one-level trees.
First and foremost, along with the policy tree T , the DEK is an input. As previ-
ously stated, it can, however, be generated at random during previous stages.
Secondly, the “sss.make shares” function described in Algorithm 3 is invoked.
Its inputs are the number of shares n , the threshold t and the secret s. This
application defines n as the number of children of the policy tree root, t as the
value set in the root, and s as the DEK to be protected. Finally, the share tree is
constructed using the secret s as root’s value and the Shamir’s shares as chil-
dren’s values.

Example 7.2.2. Let us now apply the share tree generation algorithm to the
policy tree shown in Fig. 7.3. Fig. 7.4 illustrates the resulting share tree. The
value of the root is the DEK that must be protected. The root is then connected
to the Shamir’s shares {Si}i. As we can see, the structure of the share tree is
identical to that of the policy tree from which it originated.

Share tree encryption

The second challenge is to secure the shares in order to store them safely. They
are inaccessible unless a user meets the requirements.

In order to achieve this, we can encrypt each share Si with its corresponding
attribute public key Qai using ECIES (see Chapter 3). The output is a concate-
nation of ephemeral public key QSi, MAC tagi and encrypted share ci. After

CHAPTER 7. DATA ENCRYPTION KEY SECURING 36

Algorithm 7: The share tree generation for one-level policy tree
Data: Policy tree T , Data encryption key dek
Result: Share tree T ′

1

2 n← T.root.children.len(); /* n is the number of shares */
3 t← T.root.threshold ; /* t is the threshold */
4 s← dek; /* dek is the secret */
5 {Si}i ← sss.make shares(n, t, s);
6

7 T ′ ← new tree();
8 T ′.root.value← s;
9 for i← 1 to n do

10 child← T ′.root.children[i];
11 child.value← Si;
12 end

dek

S1 S2
S3

Figure 7.4: The one-level share tree
corresponding to the policy tree of Fig. 7.3.

that, the resulting cryptogram eSi = QSi||tagi||ci is saved in place of the plain
share. The DEK can be forgotten.

This process’s pseudocode is shown in Algorithm 8. The share tree serves as
the data input. Let’s call it plain share tree in this case because the shares within
it are still saved in clear text. The “ecies.encrypt()” function from Algorithm 1 is
invoked within the for-loop. The output tree has the same structure as the input
tree. The root content has been deleted, and the shares have been encrypted.

Example 7.2.3. Fig. 7.5 depicts the share tree when the technique is applied
to the one-level tree T . As previously stated, we obtained as many shares as
the feasible requirements for the resource in question. The requirements in this
situation are the three attributes a1, a2, a3. We can then run the Algorithm 8 to
the shares S1, S2, S2 using the public keys Qa1, Qa2, Qa3 of the respective at-
tributes. The resulting cryptograms {eSi}i = {QSi||tagi||ci}i with i = 1, 2, 3 are
saved. As we can see, the DEK is missing because it can and must be forgotten.
Only profiles that meet the system’s requirements will be able to recover from
it.

7.2.2 Two-level tree

In this section, we will stare at a slightly more complicated case. Assume that
the policy tree T of a resource R has two levels. It is also referred to as a two-
level tree. The root n0 has threshold t0. The i-level child nodes {nij}j that are

CHAPTER 7. DATA ENCRYPTION KEY SECURING 37

Algorithm 8: The share tree encryption for one-level share tree
Data: Plain share tree T , Attribute’s public keys {Qai}i
Result: Encrypted share tree T ′

1

2 n← T.root.children.len(); /* n is the number of shares */
3

4 eS ← [];
5 for i← 1 to n do
6 Si ← T.root.children[i].value;
7 eSi ← ecies.encrypt(Si, Qai);
8 eS.append(eSi);
9 end

10

11 T′.root← node.new();
12 for i← 1 to n do
13 T′.root.children[i]← node.new(value = eSi);
14 end

#

eS1 eS2
eS3

Figure 7.5: The one-level encrypted share tree
corresponding to the plain share tree of Fig. 7.4.

leaves have attributes {aij}j , those nodes that are branches have thresholds
{tij}j .

Example 7.2.4. Fig. 7.6 shows an example of this case when there are three
children in the first level and two children in the second level. It is obvious that
t0 ≤ 3 and t12 ≤ 2.

Share tree generation

One approach to generate a share tree for a two-level policy tree is as follow.
Algorithm 7 can be applied to the root n0 and its children first, and then to
each first-level branch node and its children. This recursive approach allows
for code reuse and generalization to a tree with an arbitrary number of levels.

Example 7.2.5. We therefore analyze the example depicted in Fig. 7.6. The tree
looks like in Fig. 7.7 after running the Algorithm 7 once. The DEK and the first
shares {S1j}j=1,2,3 are located at the very top of the tree. The bottom, however,
still represents the policy tree. Then, Fig. 7.8 depicts the outcome of the second
step of the method. In this case, the entire tree contains keys and shares. Like
in Fig. 7.6, there is an overlap in the node n12. Indeed, it corresponds to both
share S12 and the Key Encryption Key (KEK) kek. We will learn how to manage
this link and why the key has a different name from the one on the root in the

CHAPTER 7. DATA ENCRYPTION KEY SECURING 38

t0

a11 t12
a13

a21 a22

Figure 7.6: Example of a two-level policy tree.

dek

S11 S12
S13

t12n12

a21 a22

Figure 7.7: Example of a two-level tree half
share tree (in black) and half still policy tree (in blue).

sections that follow. However, the share S12 is expected to be the object to be
protected with the KEK.

dek

S11 S12
S13

kekn12

S21 S22

Figure 7.8: Example of a two-level share tree.

Share tree encryption

It is a fair guess that the trivial case Algorithm 7 shall be applied twice to en-
crypt a two-level share tree. We just need to clarify the connection between
the branch share S12 and the KEK. There exist many methods for dealing with
this problem, we chose the following. A branch node has no linked attributes
and thus no associated key pair by definition. The KEK can be considered as

CHAPTER 7. DATA ENCRYPTION KEY SECURING 39

the private key d of a key pair linked with branch node n12. According to Sec-
tion 2.4.1, the matching public key Q is calculated from the private key d ≡ k

′

E .
As a result, we can use the same hybrid cryptosystem, i.e. ECIES, on all nodes,
with different receiver’s keypairs depending on whether they are leaf or branch
nodes. The receiver’s keypair is the attribute keypair (dai, Qai) when the node
is a leaf; when the node is a branch, the receiver’s keypair (dR, QR) is specially
constructed. In branch case, the receiver’s private key dR (≡ k

′

E) is generated
automatically. The private key dR is used to generate the public key QR. The
private key dR represents the following iteration’s input, namely the Shamir’s
secret to be split.

The Algorithm 9 specifies the encryption phase of a branch node. First, a
private and public key pair is created. The private key is then used to determine
the shares to be assigned to the various child nodes, while the public key is
used to encrypt the node’s content, which is its share.

Algorithm 9: The branch node encryption
Data: Branch node nodej , Plain share Sj

Result: Encrypted share eSj , Plain derived shares {Si}i
1

2 dR ← ecies.private key.random();
3 QR ← ecies.public key.from private(dR);
4

5 n← nodej .children.len(); /* n is the number of shares */
6 t← nodej .threshold; /* t is the threshold */
7 s← dR; /* s is the ECIES receiver’s private key */
8 {Si}i ← sss.make shares(n, t, s);
9

10 eSj ← ecies.encrypt(QR, Sj); /* encrypted share */

Example 7.2.6. The entire algorithm for share tree encryption is applied to the
share tree in Fig. 7.8 and the result is displayed in Fig. 7.9. The leaf node values
are eSij = ecies.encrypt(Sij , Qaij) and attribute public key Qaij of attribute
aij with ij = 11, 13, 21, 22. The node n12, on the other hand, is a branch, hence
Algorithm 9 is utilized. The branch node value is eS12 which was encrypted by
taking the plain share S12, the recipient’s public key QR12 using the ECIES en-
cryption function (see Algorithm 1). The recipient’s public key QR12 was gen-
erated from its corresponding private key dR12. The latter is also the Shamir’s
secret that gives rise to the shares S21 and S22.

7.2.3 Multi-level tree

We have finally reached the general case. The shares are generated and then
encrypted in a recursive approach.

Share tree generation and encryption

Before we introduce the general recursive method, we need to make a few mi-
nor changes to what has been mentioned thus far. We must, in particular, har-

CHAPTER 7. DATA ENCRYPTION KEY SECURING 40

#

eS11 eS12
eS13

eS21 eS22

Figure 7.9: The two-level encrypted share tree
corresponding to the plain share tree of Fig. 7.8.

monize the inputs. In fact, when discussing two-level share tree encryption in
Section 7.2.2, we managed to encrypt every node value using the same mech-
anism regardless of whether the node was a leaf or a branch. As long as all
node values represent the same type of data, this is possible. This is not true
for every node in the tree, however: the root is still treated separately. The root
value is overlooked, whereas any other node value is an encrypted share. One
way to overcome these problems is to consider a first share S0. It should be
the recursive algorithm’s input. S0’s first coordinate is always zero, whereas
its second coordinate is the DEK. S0 can then be encrypted as any other node
value.

Example 7.2.7. Fig. 7.10 shows an example of a generalized tree. It arises from
the same policy tree as in the two-level instance, namely the policy tree de-
picted in Fig. 7.6. Let us compare the share trees in the multi-level case (see
Fig. 7.10) and in the two-level case (see Fig. 7.9). We see that in the two-level
case, the root content is termed absent. In the multi-level situation, we in-
stead consider a share for each node, including the root. We know that eS0 =
ecies.encrypt(QR, S0) for some QR, where S0 = (0, dek).

eS0

eS11 eS12
eS13

eS21 eS22

Figure 7.10: Example of multi-level
encrypted share tree.

We are now ready to move on to the general algorithm. Taking a policy tree
T , a plain first share S0, and a succession of attribute public keys {Qai}i as
inputs, the Algorithm 10 constructs an encrypted share tree T ′. Let us examine
the provided code beginning at the end, this will help us to better understand

CHAPTER 7. DATA ENCRYPTION KEY SECURING 41

the recursive step. We can deduce from the last five lines of code (lines from
24 to 28) that our goal is to create the root of the encrypted sharing tree. When
we create the root, we associate it with all of its children and descendants, in
addition to the value of the encrypted share. The latter are generated in the
preceding code section. Hence, let us go back to the beginning of the code and
figure out how to generate the root descendants. Firstly, a distinction is made
between branch and leaf nodes (if-else statement lines 2 to 22). There are no
children if a node is a leaf (see line 21). Otherwise, if a node represents a branch,
two major operations are carried out: the first one is the production of shares
(lines 6 to 9), and the second operation is the recursive call (line 14). The newly
made shares are used as input in the recursive call on the children of the T root.
Not only do we obtain the descendant nodes from the if-else statement, but we
also obtain another crucial component of the algorithm: the ECIES recipient’s
public key. The latter is used to encrypt the root’s value, which is the first share
S0. If the node is leaf and has attribute ai, the recipient’s public key is QR

(lines 18 and 19). Otherwise, if the node is branch, the recipient’s public key is
computed from a randomly generated private key (lines 3 and 4).

Finally, the ECIES encrypt function (line 24) accepts the share S0 as input.
This is a simplification due to pseudocode that aids comprehension. The real
ECIES encryption and decryption functions accept a single binary string as in-
put. A share, on the other hand, is a point formed by two coordinates. This
indicates that, before moving from share to function, a concatenation of the
point’s first and second coordinates is required. In the decryption step, the in-
verse process is performed. Also during decryption process, concatenation is
not an issue because, knowing the fixed dimension of both coordinates, it will
be able to retrieve the share from their concatenation.

7.3 Recovering algorithm

Since the fundamental principles have previously been well described, we will
concentrate on the general case in this section. The decryption and recovery
algorithm for the initial share that included the DEK is then presented.

7.3.1 Share tree decryption and recovering

The purpose of this function is to recover the first share S0, which is the plain-
text share corresponding to the root of the share tree at hand. This is not always
doable. As a consequence, we will see that the outcome of this stage of the pro-
cedure can be either the plain share or nothing. The Algorithm 11 shows the
pseudocode of this last phase. During the share tree generation and encryp-
tion, we used the Shamir’s “make shares” and ECIES’s “encrypt” functions.
The opposite functions are now employed. Shamir’s “recover secret” (see Al-
gorithm 4) and ECIES’s “decrypt” (see Algorithm 2) are used. The algorithm
can be divided into two macro-steps. During the first phase, we attempt to re-
cover the ECIES decryption key, which is the recipient’s private key dR. This
key is used to decrypt the encrypted share during the second phase. If the cur-
rent tree’s root is branch (see lines 4 to 17), then the ECIES recipient’s private
key is the Shamir’s secret derived from those shares gained via a recursive call

CHAPTER 7. DATA ENCRYPTION KEY SECURING 42

Algorithm 10: The share tree generation and encryption
Data: Policy tree T , Plain first share S0, Attribute public keys {Qai}i
Result: Encrypted share tree T ′

1

2 if T.root is Branch then
3 dR ← ecies.private key.random();
4 QR ← ecies.public key.from private(dR);
5

6 n← T.root.children.len(); /* n is the number of shares

*/
7 t← T.root.threshold; /* t is the threshold */
8 s← dR; /* s is the ECIES receiver’s private key */
9 {Si}i ← sss.make shares(n, t, s);

10

11 share children← [];
12 for i← 1 to n do
13 policy childi ← T.root.children[i];
14 share childi ← recursive call(policy childi, Si, {Qai}i);
15 share children.append(share childi);
16 end
17 else
18 ai ← T.root.value ; /* current root is leaf */
19 QR ← Qai of attribute ai;
20

21 share children← [];
22 end
23

24 eS0 ← ecies.encrypt(QR, S0) ; /* encrypted first share */
25

26 T
′
.root← node.new() ; /* new tree from root */

27 T
′
.root.value← eS0;

28 T
′
.root.children← share children;

CHAPTER 7. DATA ENCRYPTION KEY SECURING 43

(line 10). In contrast, if the root is a leaf with the attribute ai, the recipient’s pri-
vate key coincides with the attribute private key dai. If everything goes well,
we should be able to acquire the first share in plaintext. However, we may be
unable to get it because an error may occur in both the branch and leaf scenar-
ios. When we do not the attribute private key or enough shares to retrieve the
secret, the algorithm output is “None”. It is impossible to recover the desired
share.

Algorithm 11: The share tree decryption and recovery
Data: Share tree T ′, Policy tree T , Attribute private keys {dai}i
Result: Either Plain first share S0 or None

1

2 dR ← ecies.private key.new(); /* ECIES receiver’s private
key */

3

4 if T.root is Branch then
5 shares← [];
6 n← T.root.children.len(); /* n is the number of children

*/
7 for i← 1 to n do
8 share childi← T’.root.children[i];
9 policy childi← T.root.children[i];

10 Si ← recursive call(share childi, policy childi, {dai}i);
11 shares.append(Si);
12 end
13 t← T.root.threshold; /* t is the threshold */
14 secret← sss.recover secret(t, shares);
15 if secret is valid then
16 dR ← secret;
17 end
18 else
19 ai ← T.root.value ; /* current root is leaf */
20 if dai exists then
21 dR ← dai;
22 end
23 end
24

25 if dR is valid then
26 eS0 ← T

′
.root.value;

27 S0 ← ecies.decrypt(dR, eS0) ; /* Plain first share */
28 else
29 None(“Decryption is not possible”)
30 end

Example 7.3.1. Finally, let us conclude the Example 7.1.1 of Hypatia, whose
policy tree was the one depicted in Fig. 7.2, trying to decode her share tree
shown in Fig. 7.10. Remember that Hypatia has the attribute, and so the cor-
responding private key, for the roles p and s. According to the Algorithm 11,

CHAPTER 7. DATA ENCRYPTION KEY SECURING 44

we begin the decryption and recovering process from the root tree. However,
we do not process it immediately since we first recurse on its children. Start-
ing from its first child node, the share eS11 in position n11 can be decrypted
using the attribute private key dp (see Fig. 7.11). In the following step, we go

eS0

S11 eS12
eS13

eS21 eS22

Figure 7.11: Example of decryption, first step.

to node n12 but immediately recurse to its children, that are child nodes. Only
the node in position n22 can be decoded because it is linked to the s attribute.
The attribute private key ds is then used to obtain S22. The share in position
n21, on the other hand, remains concealed since it lacks the corresponding r
property (see Fig. 7.12). We can now handle the node n12. The recovering se-
cret algorithm of SSS comes into play in this scenario (Algorithm 11, line 14).
The corresponding threshold in the policy tree was t12 = 1, and the number of
decrypted shares accessible is exactly 1. Therefore, we can apply the procedure
to recover the secret of n12 and use it to decrypt eS12 (see Fig. 7.13). The share
in position n13 is unreadable since it is linked to the q attribute, which Hypatia
does not own (see Fig. 7.14). Lastly, we went back to the root of the tree. This
had threshold t0 = 2 and we are in possession of exactly two decrypted shares,
S11 and S12. This means that we can recover the secret linked to n0 and use it
to decrypt eS0 (see Fig. 7.15).

eS0

S11 eS12
eS13

∄ S22

Figure 7.12: Example of decryption, second step.

CHAPTER 7. DATA ENCRYPTION KEY SECURING 45

eS0

S11 S12
eS13

∄ S22

Figure 7.13: Example of decryption, third step.

eS0

S11 S12
∄

∄ S22

Figure 7.14: Example of decryption, fourth step.

S0

S11 S12
∄

∄ S22

Figure 7.15: Example of decryption, fifth step.

Chapter 8

Results

This section outlines three key aspects of the work’s outcome. Section 8.1 con-
tains the proof of concept, which demonstrates the proper functioning of the
algorithm under two alternative initial conditions. The memory and necessary
macro-operations performance is reported in Section 8.2. Finally, in Section 8.3,
an evaluation is conducted.

8.1 Proof of concept

The proof of concept is an important result for a new algorithm. Two of the
basic tests used to validate Attribute-based Encryption Shamir’s Secret Sharing
(ABE-SSS) are shown in this section. They both function by carrying out the
following procedures. A DEK is used to encrypt a generic database resource.
The DEK is then added to the first share in the share tree, and the encryption
process begins. The opposite process, that is, the reconstruction of the DEK and
the decryption of the resource, is next performed.

Despite this, the two methods are distinct because they reflect two distinct
starting points. The first test in Algorithm 12 describes a circumstance in which
the user possesses the attributes required to reconstruct and decrypt the re-
source. Indeed, as we can see, the expected outcome is success.

Instead, Algorithm 13 offers the reverse circumstance, in that it is expected
to fail in resource decryption since the user lacks the necessary prerequisites.

Both tests were unsuccessful. In other words, we obtained the resource from
Algorithm 12 but not from Algorithm 13.

8.2 Solution performance

In this section, we present the performance of ABE-SSS project. The results are
discussed in terms of the amount of bits necessary to save the solution and the
number of macro-operations that must be executed.

The ABE-SSS technique returns a tree structure holding cryptograms, we
called each one of them as eS. Remember that any eS is made up of the sender’s
public key QS , tag, and encrypted share c = E(kE , S), where S is a Shamir’s
share. We have a cryptogram for each node of the tree. Let us examine each

46

CHAPTER 8. RESULTS 47

Algorithm 12: Test 1 - Should succeed
Data: Resource R, Policy tree T , Attribute public keys {Qai}i for every

i, Attribute private keys {daj}j for some j such that T
requirements are met

Result: Successful test
1 /* Resource encryption process */
2 dek ← random();
3 c← E(dek,R);
4

5 /* DEK encryption process */
6 S0 ← (0, dek);
7 T ′ ← generate encrypt(T , S0, {Qai}i);
8

9 /* DEK decryption process */

10 S
′

0 ← decrypt recover(T ′, T , {daj}j);
11 dek′ ← get second coordinate(S

′

0);
12

13 /* Resource decryption process */
14 R′ ← D(dek′, c);
15

16 /* Verification */
17 assert eq!(R, R′)

Algorithm 13: Test 2 - Should fail
Data: Resource R, Policy tree T , Attribute public keys {Qai}i for every

i, Attribute private keys {daj}j for some j such that T
requirements are not met

Result: Failing test
1 /* Resource encryption process */
2 dek ← random();
3 c← E(dek,R);
4

5 /* DEK encryption process */
6 S0 ← (0, dek);
7 T ′ ← generate encrypt(T , S0, {Qai}i);
8

9 /* DEK decryption process */

10 S
′

0 ← decrypt recover(T ′, T , {daj}j); // output is None

11 dek′ ← get second coordinate(S
′

0);
12

13 /* Resource decryption process */
14 R′ ← D(dek′, c);
15

16 /* Verification */
17 assert eq!(R, R′); // should fail

CHAPTER 8. RESULTS 48

component and try to determine how many bytes are required to encode a
cryptogram. A public key is nothing more than a point of the elliptic curve
Curve25519, which is represented by 32 bytes. The tag from poly1303 requires
16 bytes. A Shamir’s share is a pair of scalars, that is, elements of the cyclic
subgroup produced by G, where G is the point of the elliptic curve curve25519
with x = 9. A Shamir’s share is represented by 64 bytes because each scale is
encoded with 32 bytes. We need a total of 32 + 16 + 64 = 112 bytes for each
node of the tree (see Table 8.1).

COMPONENT BYTES

sender’s public key 32
tag 16

share 64
cryptogram 112

Table 8.1: Number of bytes required
for each cryptogram.

In this circumstance, we must remember that the table’s tolopogy is signif-
icant. As a result, additional bytes will be required. However, it is difficult to
assess this element right now because it is highly related to the type of database
with which the solution is integrated.

Examine now the number of macro-operations required to obtain both a
share tree and the DEK. Firstly, consider the macro-operations required to ob-
tain the share tree. We need to process one ECIES encryption per node. If a
node is a leaf, it also needs one “make share” function. Secondly, in order to
obtain the DEK from a share tree, we have to perform one ECIES decryption
per node, in addition to one “recover secret” function if the node is a leaf. The
Table 8.2 summarizes this result.

MACRO-OPERATIONS

make share /
recover secret #nodes

ecies encryption /
ecies decryption #branches

Table 8.2: Number of macro-operations required
for each ABE-SSS encryption/decryption process.

8.3 Solution evaluation

ABE-SSS is a new project at its very first stage. The proof of concept shown
in Section 8.1 represent the first important achievement. The performance can
undoubtedly be enhanced and optimized in terms of bytes as well as number
of operation. Looking at the amount of bytes required to store, the overhead
is quite big because it accounts for roughly 45% of the total number of bytes
sought. It can almost certainly be reduced.

CHAPTER 8. RESULTS 49

2T

p 1 q

r s

3Topt

p

2

r

1

s

1

q

2

Figure 8.1: Original policy tree (left).
Optimized policy tree (right).

Also, branch nodes are the nodes that need the most computing effort while
performing necessary macro-operations. The cryptographic operations them-
selves are already good and well optimized. Despite this, the number of macro-
operations required can be decreased.

As we can see, the true heart of optimization at this stage is concerned with
the structure of the tree connected with the resource policy. The greater the
depth of the tree, the more operations and bytes are required to save the result.

A viable solution would be to award a variable amount of shares to each
node dependent on its level, and hence on the threshold connected with it. The
intuitive idea is shown in Fig. 8.1. The policy tree T on the left is the original,
which we discussed in Section 7.1. For each node in this tree T , one Shamir’s
share is counted. The policy tree Topt on the right is an optimized tree with
varying numbers of Shamir’s shares per node. Under each node of the tree, the
number of shares corresponding to that node is given. The reader is exhorted
to think about how the two trees convey the same policy. This improvement
may be part of the future developments.

Furthermore, a second limit of the solution concern the collision resistance.
Indeed, according to this model, people with varying attributes might combine
their private keys and gain access to resources that do not belong to them. In
this regard, this approach does not meet the ABE standard. However, this can
be enhanced by preventing people from accessing confidential information if
they do not match the required criteria right away. It is also part of future work
so that ABE-SSS can be call an actual implementation of ABE standard. It is
also part of future work to make ABE-SSS a proper implementation of the ABE
standard.

Conclusion

Data protection is becoming increasingly important, especially in recent years
in which several and important cyber attacks have occurred. Data saved on
digital devices is frequently private and/or sensitive. Therefore as a conse-
quence, its protection is critical and can really determine our safety, security,
and health. Security must come not just from the outside, but also from within
systems, whether Information Technology (IT) or not. Structured systems sig-
nificantly minimize the effects of both undesired errors and malicious behavior.
Cryptography, especially that based on roles, has been highlighted as one of the
most relevant data protection strategies. Although you can access a system, the
resources stored within it is not viewable unless you have the appropriate role.
Different roles provide you access to different resources.

LumoSQL, an open source project, also deals with data protection and se-
curity. Its aim is to create a library for embedded data storage that permits
granular encryption of resources. The encryption process is based on the re-
quirements held, also called attributes, rather than the position occupied by
the resource (a certain table, rather than a certain column or row).

The ABE-SSS project developed at this point. The name origins from the
core technique of this work, Attribute-Based Encryption (ABE), in conjunction
with Shamir’s Secret Sharing (SSS) scheme. While ABE is responsible for bring
attributes into encryption and decryption process, SSS deals with splitting and
recovering the components that keep a system secret, namely the encryption
keys. The encryption and decryption themselves are provided by the hybrid
scheme Integrated Encryption Scheme (IES) for elliptic curves, namely ECIES.

The results suggest that the algorithm works. When the prerequisites are
satisfied, you can encrypt and decode DEKs; otherwise, you cannot. Despite
this, this approach does not offer collusion resistance since various users with
different secret keys can collect their secrets and decode resources that they are
not permitted to access. This improvement will be part of future work. Also,
because of the encryption procedure, the bytes necessary to save the solution
have a significant overhead. The number of operations required grows in pro-
portion to the depth of the tree. Optimizing the policy representation with a
less deep tree would improve both bytes and operations required. A solution
has already been provided.

50

Future work

This work’s next advances include a more effective and collision-resistant uti-
lization of the ABE. In fact, as described in Section 8.3, ABE-SSS is not now
collision resistant, but it can be.

Furthermore, optimization in terms of bytes and number of processes is
regarded an impending future advancement. A viable approach to achieving
this result is already illustrated in Section 8.3.

Finally, one of the upcoming initiatives is the integration of ABE-SSS with
the LumoSQL project.

51

Glossary

ABE Attribute-Based Encryption. Public-key cryptographic encryption tech-
nique wherein users use attributes as keys. Attributed initially to Sahai
and Waters, and Bethencourt, Sahai, and Waters thereafter. v, 4, 49–51, 53

API Application programming interface. A standardized software interface
that allows to applications to communicate with each other. 3, 53

LumoSQL An extension of SQLite that aims to add privacy and security to
embedded databases. https://lumosql.org/ v, 3, 4, 51, see also SQLite

SQLite The most used embedded SQL database engine. https://sqlite.
org/ v, 4

SSS Shamir’s Secret Sharing. Cryptographic technique to split a secret into
shares [9], based on polynomial interpolation. v, 4, 5, 24, 25, 34, 35, 44, 50,
53

52

https://lumosql.org/
https://sqlite.org/
https://sqlite.org/

Abbreviations

ABE-SSS Attribute-based Encryption Shamir’s Secret Sharing v, 46, 48–51

ABE Attribute-Based Encryption v, 4, 49–51, Glossary: ABE

API application programming interface 3, Glossary: API

DEK Data Encryption Key 29–31, 34–37, 40, 41, 46, 48, 50

ECC Elliptic-curve Cryptography 6, 16, 19, 23

ECDH Elliptic-curve Diffie–Hellman 16, 17, 23

ECDLP Elliptic Curve Discrete Logarithm Problem 15, 17, 18

ECIES Elliptic-curve Integrated Encryption Scheme 19–21, 23, 35, 39, 41, 48, 50

IES Integrated Encryption Scheme 50

IT Information Technology 50

KA Key Agreement 19–23

KDF Key Derivation Function 19–22

KEK Key Encryption Key 37, 38

KEM Key Encapsulation Mechanism 19

MAC Message Authentication Code 19, 20, 22, 23, 35

RSA Rivest–Shamir–Adleman 6, 16, 19

SEE SQLite Encryption Extension 4

SSS Shamir’s Secret Sharing v, 4, 5, 24, 25, 34, 35, 44, 50, Glossary: SSS

TDE transparent database encryption 5

53

Bibliography

[1] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation), Apr. 27, 2016.

[2] Consumer data right (CDR), Nov. 26, 2017. [Online]. Available: https:
//www.accc.gov.au/focus-areas/consumer-data-right-
cdr-0 (visited on 08/29/2022).

[3] L. H. Newman, Atlanta spent $2.6m to recover from a $52,000 ransomware
scare, Apr. 2018. [Online]. Available: https : / / www . wired . com /
story / atlanta - spent - 26m - recover - from - ransomware -
scare/.

[4] C. Smith. “TikTok exploited an Android privacy loophole to track users,”
BGR. (Aug. 12, 2020), [Online]. Available: https://bgr.com/tech/
tiktok - tracking - users - android - app - collected - mac -
addresses/ (visited on 04/05/2022).

[5] Lapowsky Issie, “Facebook Exposed 87 Million Users to Cambridge Ana-
lytica,” Wired, Aug. 3, 2020, ISSN: 1059-1028. [Online]. Available: https:
//www.wired.com/story/facebook-exposed-87-million-
users-to-cambridge-analytica/ (visited on 08/03/2020).

[6] Lumosql. [Online]. Available: https://github.com/LumoSQL/lumosql.

[7] Sqlite. [Online]. Available: https://www.sqlite.org/index.html.

[8] The sqlite encryption extension (see). [Online]. Available: https://sqlite.
org/com/see.html.

[9] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, Nov. 1979, ISSN: 0001-0782, 1557-7317. DOI: 10 .
1145/359168.359176. [Online]. Available: https://dl.acm.org/
doi/10.1145/359168.359176 (visited on 03/31/2022).

[10] Archiveddocs, Transparent data encryption (tde). [Online]. Available: https:
//learn.microsoft.com/en-us/previous-versions/sql/
sql-server-2012/bb934049(v=sql.110)?redirectedfrom=
MSDN.

[11] [Online]. Available: https://www.ibm.com/docs/en/db2/10.5?
topic=windows-fix-pack-summary.

[12] Oracle advanced data security. [Online]. Available: https://www.oracle.
com/it/security/database-security/advanced-security/.

54

https://www.accc.gov.au/focus-areas/consumer-data-right-cdr-0
https://www.accc.gov.au/focus-areas/consumer-data-right-cdr-0
https://www.accc.gov.au/focus-areas/consumer-data-right-cdr-0
https://www.wired.com/story/atlanta-spent-26m-recover-from-ransomware-scare/
https://www.wired.com/story/atlanta-spent-26m-recover-from-ransomware-scare/
https://www.wired.com/story/atlanta-spent-26m-recover-from-ransomware-scare/
https://bgr.com/tech/tiktok-tracking-users-android-app-collected-mac-addresses/
https://bgr.com/tech/tiktok-tracking-users-android-app-collected-mac-addresses/
https://bgr.com/tech/tiktok-tracking-users-android-app-collected-mac-addresses/
https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
https://github.com/LumoSQL/lumosql
https://www.sqlite.org/index.html
https://sqlite.org/com/see.html
https://sqlite.org/com/see.html
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://dl.acm.org/doi/10.1145/359168.359176
https://dl.acm.org/doi/10.1145/359168.359176
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2012/bb934049(v=sql.110)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2012/bb934049(v=sql.110)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2012/bb934049(v=sql.110)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2012/bb934049(v=sql.110)?redirectedfrom=MSDN
https://www.ibm.com/docs/en/db2/10.5?topic=windows-fix-pack-summary
https://www.ibm.com/docs/en/db2/10.5?topic=windows-fix-pack-summary
https://www.oracle.com/it/security/database-security/advanced-security/
https://www.oracle.com/it/security/database-security/advanced-security/

BIBLIOGRAPHY 55

[13] Mysql enterprise transparent data encryption (tde). [Online]. Available: https:
//www.mysql.com/products/enterprise/tde.html#:˜:
text=MySQL%5C%20Enterprise%5C%20TDE%5C%20enables%5C%
20data,decrypted%5C%20when%5C%20read%5C%20from%5C%
20storage..

[14] Column-level encryption. [Online]. Available: https://www.ibm.com/
docs/en/informix- servers/14.10?topic=data- column-
level-encryption.

[15] C. Braund, Mongodb releases queryable encryption preview: Mongodb blog,
Jun. 2022. [Online]. Available: https://www.mongodb.com/blog/
post/mongodb-releases-queryable-encryption-preview.

[16] J. H. Silverman, The arithmetic of elliptic curves. Springer, 2009, vol. 106.

[17] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans-
actions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976, ISSN:
0018-9448. DOI: 10.1109/tit.1976.1055638.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[19] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987. DOI: 10.1090/S0025-5718-1987-
0866109-5.

[20] V. S. Miller, “Use of Elliptic Curves in Cryptography,” in Advances in
Cryptology — CRYPTO ’85 Proceedings, H. C. Williams, Ed., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1986, pp. 417–426, ISBN: 978-3-540-
39799-1.

[21] L. C. Washington, Elliptic curves: number theory and cryptography. Chap-
man and Hall/CRC, 2008.

[22] N. Koblitz, A course in number theory and cryptography. Springer Science &
Business Media, 1994, vol. 114.

[23] W. M. Baldoni, C. Ciliberto, and G. P. Cattaneo, Aritmetica, crittografia e
codici. Springer Science & Business Media, 2007.

[24] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in In-
ternational Workshop on Public Key Cryptography, M. Yung, Y. Dodis, A.
Kiayias, and T. Malkin, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 207–228, ISBN: 978-3-540-33852-9.

[25] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted Ed-
wards Curves,” in International Conference on Cryptology in Africa, Springer,
2008, pp. 389–405.

[26] H. de Valence and I. Lovecruft, Curve25519-dalek: A pure-Rust implemen-
tation of group operations on Ristretto and Curve25519, 2016–2018. [Online].
Available: https://github.com/dalek-cryptography/curve25519-
dalek (visited on 06/17/2018).

https://www.mysql.com/products/enterprise/tde.html#:~:text=MySQL%5C%20Enterprise%5C%20TDE%5C%20enables%5C%20data,decrypted%5C%20when%5C%20read%5C%20from%5C%20storage.
https://www.mysql.com/products/enterprise/tde.html#:~:text=MySQL%5C%20Enterprise%5C%20TDE%5C%20enables%5C%20data,decrypted%5C%20when%5C%20read%5C%20from%5C%20storage.
https://www.mysql.com/products/enterprise/tde.html#:~:text=MySQL%5C%20Enterprise%5C%20TDE%5C%20enables%5C%20data,decrypted%5C%20when%5C%20read%5C%20from%5C%20storage.
https://www.mysql.com/products/enterprise/tde.html#:~:text=MySQL%5C%20Enterprise%5C%20TDE%5C%20enables%5C%20data,decrypted%5C%20when%5C%20read%5C%20from%5C%20storage.
https://www.mysql.com/products/enterprise/tde.html#:~:text=MySQL%5C%20Enterprise%5C%20TDE%5C%20enables%5C%20data,decrypted%5C%20when%5C%20read%5C%20from%5C%20storage.
https://www.ibm.com/docs/en/informix-servers/14.10?topic=data-column-level-encryption
https://www.ibm.com/docs/en/informix-servers/14.10?topic=data-column-level-encryption
https://www.ibm.com/docs/en/informix-servers/14.10?topic=data-column-level-encryption
https://www.mongodb.com/blog/post/mongodb-releases-queryable-encryption-preview
https://www.mongodb.com/blog/post/mongodb-releases-queryable-encryption-preview
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek

BIBLIOGRAPHY 56

[27] Y. Nir and S. Josefsson, “Curve25519 and Curve448 for the Internet Key
Exchange Protocol Version 2 (IKEv2) Key Agreement,” Internet Engi-
neering Task Force, Request for Comments RFC 8031, Dec. 2016, 8 pp.
DOI: 10.17487/RFC8031. [Online]. Available: https://datatracker.
ietf.org/doc/rfc8031 (visited on 10/12/2022).

[28] M. Marlinspike. “Advanced cryptographic ratcheting,” Signal Messen-
ger. (Nov. 26, 2013), [Online]. Available: https://signal.org/blog/
advanced-ratcheting/ (visited on 04/27/2021).

[29] M. Hamburg, “Decaf: Eliminating Cofactors Through Point Compres-
sion,” in Advances in Cryptology – CRYPTO 2015, ser. Lecture Notes in
Computer Science, R. Gennaro and M. Robshaw, Eds., vol. 9215, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 705–723, ISBN: 978-3-
662-47988-9. DOI: 10.1007/978- 3- 662- 47989- 6_34. [Online].
Available: http://link.springer.com/10.1007/978-3-662-
47989-6_34 (visited on 04/30/2020).

[30] H. de Valence, I. Lovecruft, and T. Arcieri, The Ristretto Group. [Online].
Available: https://ristretto.group (visited on 05/03/2019).

[31] M. Abdalla, M. Bellare, and P. Rogaway, “The oracle diffie-hellman as-
sumptions and an analysis of dhies,” in Cryptographers’ Track at the RSA
Conference, Springer, 2001, pp. 143–158.

[32] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop Record of
SASC, vol. 8, 2008, pp. 3–5.

[33] D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,” in
Fast Software Encryption, H. Gilbert and H. Handschuh, Eds., ser. Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, 2005, pp. 32–
49, ISBN: 978-3-540-31669-5. DOI: 10.1007/11502760_3.

[34] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols,”
IETF, RFC 8439, Jun. 2018. [Online]. Available: https://tools.ietf.
org/html/rfc8439 (visited on 10/09/2020).

[35] Rust. [Online]. Available: https://www.rust-lang.org/.

[36] Zkcrypto, Zkcrypto/curve25519-dalek-ng: A pure-rust implementation of group
operations on ristretto and curve25519. [Online]. Available: https://github.
com/zkcrypto/curve25519-dalek-ng.

[37] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Springer, 2005, pp. 457–473. DOI: 10.1007/11426639_27.

[38] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” in 2007 IEEE Symposium on Security and Privacy (SP
’07), May 2007, pp. 321–334. DOI: 10.1109/SP.2007.11.

https://doi.org/10.17487/RFC8031
https://datatracker.ietf.org/doc/rfc8031
https://datatracker.ietf.org/doc/rfc8031
https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/advanced-ratcheting/
https://doi.org/10.1007/978-3-662-47989-6_34
http://link.springer.com/10.1007/978-3-662-47989-6_34
http://link.springer.com/10.1007/978-3-662-47989-6_34
https://ristretto.group
https://doi.org/10.1007/11502760_3
https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/rfc8439
https://www.rust-lang.org/
https://github.com/zkcrypto/curve25519-dalek-ng
https://github.com/zkcrypto/curve25519-dalek-ng
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/SP.2007.11

	Acknowledgements
	Abstract
	I Introduction
	Problem statement
	Data protection
	LumoSQL
	Research Topic
	State of the art
	Overview

	Modern cryptography and ECC
	Elliptic curves
	The group law

	Elliptic curves over finite fields
	Finite fields
	Properties

	Elliptic-curve discrete logarithm problem
	Elliptic-curve cryptography
	Elliptic-curve Diffie-Hellman

	Edwards curves and Curve25519

	Elliptic Curve Integrated Encryption Scheme
	Functional components of ECIES
	Key-agreement protocol
	Hash function
	Key derivation function
	Message authentication code
	Symmetric scheme

	ECIES encryption and decryption
	Selected functions in ABE-SSS
	ECDH-based KA
	Chacha20-Poly1305

	Shamir's Secret Sharing
	Mathematical formulation
	Making shares
	Recovering secret

	Observations
	Information theoretically secure
	Share revocation

	II Attribute-Based Encryption using Shamir's Secret Sharing
	ABE-SSS project
	Resource securing
	Resource encryption
	Resource decryption

	Data encryption key securing
	Policy tree
	Attribute keypairs

	Share tree
	One-level tree
	Two-level tree
	Multi-level tree

	Recovering algorithm
	Share tree decryption and recovering

	Results
	Proof of concept
	Solution performance
	Solution evaluation

	Conclusion
	Future work
	Glossary
	Abbreviations

